首页> 外文期刊>Chemical engineering journal >Towards selenium recovery: Biocathode induced selenate reduction to extracellular elemental selenium nanoparticles
【24h】

Towards selenium recovery: Biocathode induced selenate reduction to extracellular elemental selenium nanoparticles

机译:朝硒回收:生物疗法诱导硒酸盐还原到细胞外元素硒纳米粒子

获取原文
获取原文并翻译 | 示例
           

摘要

Microorganisms can remove selenate (SeO4-2) in water by converting it to elemental selenium nanoparticles. Conventional biological reactors usually simultaneously produce intracellular and extracellular elemental selenium nanoparticles or only produce intracellular selenium nanoparticles. Recovery of the intracellular selenium nanoparticles is commercially prohibitive due to high energy demand for separating the intracellular selenium from the biomass components. This work addressed the challenge for the first time by using a biocathode-based bioelectrochemical reactor that produced extracellular selenium nanoparticles only, which eliminated the need for separating the intracellular selenium from the biomass. The continuous-flow bioelectrochemical reactor removed 99.6% of the selenate at a selenate surface loading rate of 330 mg Se/m(2)-day, which was higher than that in most of the conventional biological reactors. The inoculum was a microbial consortium containing both intracellular and extracellular selenium-producing bacteria, but only extracellular selenium nanoparticles were observed when the biocathode was imaged by a transmission electron microscope. Raman spectrometry further demonstrated the existence of significant Cytochrome c (Cyr c) on the cathode, an enzyme that plays a key role in extracellular electron transfer and subsequent extracellular selenium production. Quantifying factors (e.g., internal resistance and overpotential loss) that affected the current shed light on strategies for increasing the selenate removal: periodical cleaning of the cation exchange membrane and using higher electron donor concentration in the anode chamber. The electron distribution in the anodic and cathodic chambers suggested insignificant interference by methanogenesis and sulfate reduction.
机译:通过将其转化为元素硒纳米粒子,微生物可以在水中除去硒酸盐(SEO4-2)。常规的生物反应器通常同时产生细胞内和细胞内元素硒纳米颗粒或仅生产细胞内硒纳米颗粒。由于对将细胞内硒从生物质组分分离的高能量需求,培养的细胞内硒纳米颗粒是商业上令人抑制的。这项工作首次使用基于生物散差基的生物电化学反应器来解决挑战,该反应器仅产生细胞外硒纳米颗粒,这消除了将细胞内硒与生物质分离的需要。连续流动生物电化学反应器除去&在硒酸盐表面加载速率为330mg SE / m(2)--day的99.6%,其高于大多数常规生物反应器。接种物是含有细胞内和细胞外硒的细菌的微生物联盟,但是当通过透射电子显微镜成像时,只观察到细胞外硒纳米颗粒。拉曼光谱进一步证明了阴极上的显着细胞色素C(Cyr C)的存在,该酶在细胞外电子转移和随后的细胞外硒生产中起着关键作用。量化因素(例如,内阻和过电位损失),影响当前脱落的校长,用于增加硒酸盐的校长:阳离子交换膜的周期性清洁,并在阳极室中使用更高的电子给体浓度。阳极和阴极腔室中的电子分布表明通过甲烷化和硫酸盐减少了微不足道的干扰。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号