...
首页> 外文期刊>Current Biology: CB >Principles of Insect Path Integration
【24h】

Principles of Insect Path Integration

机译:昆虫路径融合原则

获取原文
获取原文并翻译 | 示例
           

摘要

Continuously monitoring its position in space relative to a goal is one of the most essential tasks for an animal that moves through its environment. Species as diverse as rats, bees, and crabs achieve this by integrating all changes of direction with the distance covered during their foraging trips, a process called path integration. They generate an estimate of their current position relative to a starting point, enabling a straight-line return, following what is known as a home vector. While in theory path integration always leads the animal precisely back home, in the real world noise limits the usefulness of this strategy when operating in isolation. Noise results from stochastic processes in the nervous system and from unreliable sensory information, particularly when obtaining heading estimates. Path integration, during which angular self-motion provides the sole input for encoding heading (idiothetic path integration), results in accumulating errors that render this strategy useless over long distances. In contrast, when using an external compass this limitation is avoided (allothetic path integration). Many navigating insects indeed rely on external compass cues for estimating body orientation, whereas they obtain distance information by integration of steps or optic-flow-based speed signals. In the insect brain, a region called the central complex plays a key role for path integration. Not only does the central complex house a ring-attractor network that encodes head directions, neurons responding to optic flow also converge with this circuit. A neural substrate for integrating direction and distance into a memorized home vector has therefore been proposed in the central complex. We discuss how behavioral data and the theoretical framework of path integration can be aligned with these neural data.
机译:不断监测其在空间中的位置相对于目标是通过环境移动的动物最重要的任务之一。物种作为大鼠,蜜蜂和螃蟹的不同,通过将所有方向的变化与觅食旅行期间覆盖的距离相加,这是一种称为路径集成的过程。它们相对于起点产生了它们当前位置的估计,从而实现直线返回,之后是所谓的家庭矢量。虽然在理论路径集成始终导致动物始终回到家中,但在现实世界中,在孤立运行时,在现实世界噪声限制了这种策略的有用性。噪声来自神经系统的随机过程以及来自不可靠的感官信息,特别是在获得标题估计时。路径集成,在此,在此期间角度自动运动提供用于编码标题的唯一输入(成语路径集成),导致累积误差,使该策略远距离无用。相比之下,在使用外部罗盘时,避免了这种限制(同种数道路径集成)。许多导航昆虫确实依赖于外部罗盘提示来估计身体取向,而通过集成步骤或光学流量的速度信号,它们获得距离信息。在昆虫大脑中,称为中央复杂的区域为路径集成发挥着关键作用。中央复杂房屋不仅是编码头部方向的环形吸引子网络,响应光学流量的神经元也会通过该电路收敛。因此,在中央综合体中提出了一种用于将方向和距离集成到存储的家庭载体中的神经基质。我们讨论行为数据和路径集成的理论框架可以与这些神经数据对齐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号