...
首页> 外文期刊>ACS applied materials & interfaces >Performance Limit of Monolayer WSe2 Transistors; Significantly Outperform Their MoS2 Counterpart
【24h】

Performance Limit of Monolayer WSe2 Transistors; Significantly Outperform Their MoS2 Counterpart

机译:单层WSE2晶体管的性能极限; 显着优于其MOS2对应物

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

With the scaling limits of silicon-based MOS technology, the critical and challenging issue is to explore more and more alternative materials to improve the performance of devices. Two-dimensional (2D) semiconductor WSe2 with a proper band gap and inherent stability under ambient conditions makes it a potential channel material for realizing new generation field-effect transistors (FETs). In light of the low on-state current of the experimental sub-10 nm 2D MoS2 FETs, we explore the limitation of the monolayer (ML) WSe2 device performance by using accurate ab initio quantum transport simulation. We find that the sub-10 nm 2D WSe2 FETs apparently outperform their MoS2 counterpart. The on-state current of the optimized p-type ML WSe2 FETs can satisfy the criteria of the International Technology Roadmap for Semiconductors (ITRS) on both the high-performance (HP) and low-power (LP) devices until the gate length is scaled down to 2 and 3 nm, respectively. By the aid of the negative capacitance effect, even the 1 nm gate-length WSe2 MOSFETs can satisfy both the HP and LP requirements in the ITRS 2028 completely. Remarkably, the ML WSe2 MOSFET has the highest theoretical on-current in LP application among the examined 2D MOSFETs at the 5 nm gate length to the best of our knowledge.
机译:随着基于硅的MOS技术的缩放限制,关键和具有挑战性的问题是探索越来越多的替代材料来提高设备的性能。在环境条件下具有适当的带隙和固有稳定性的二维(2D)半导体WSE2使其成为用于实现新一代场效应晶体管(FET)的电位通道材料。鉴于实验性SUB-10D MOS2 FET的低导通电流,我们通过使用精确的AB INITIO量子传输模拟来探讨单层(ML)WSE2器件性能的限制。我们发现Sub-10 NM 2D WSE2 FET显然优于其MOS2对应物。优化的P型ML WSE2 FET的导通电流可以满足高性能(HP)和低功耗(LP)设备的半导体(ITRS)的国际技术路线图的标准,直到栅极长度为分别缩小到2和3 nm。借助于负电容效应,即使是1nm门长WSE2 MOSFET也可以完全满足ITRS 2028中的HP和LP要求。值得注意的是,ML WSE2 MOSFET在5nm栅极长度中,在我们的最佳知识中具有最高的LP应用中的LP应用中的最高理论电流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号