...
首页> 外文期刊>ACS applied materials & interfaces >Tuning ZnO Sensors Reactivity toward Volatile Organic Compounds via Ag Doping and Nanoparticle Functionalization
【24h】

Tuning ZnO Sensors Reactivity toward Volatile Organic Compounds via Ag Doping and Nanoparticle Functionalization

机译:调谐ZnO传感器通过Ag掺杂和纳米粒子官能化对挥发性有机化合物的反应性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nanomaterials for highly selective and sensitive sensors toward specific gas molecules of volatile organic compounds (VOCs) are most important in developing new-generation of detector devices, for example, for biomarkers of diseases as well as for continuous air quality monitoring. Here, we present an innovative preparation approach for engineering sensors, which allow for full control of the dopant concentrations and the nanoparticles functionalization of columnar material surfaces. The main outcome of this powerful design concept lies in fine-tuning the reactivity of the sensor surfaces toward the VOCs of interest. First, nanocolumnar and well-distributed Ag-doped zinc oxide (ZnO:Ag) thin films are synthesized from chemical solution, and, at a second stage, noble nanoparticles of the required size are deposited using a gas aggregation source, ensuring that no percolating paths are formed between them. Typical samples that were investigated are Ag-doped and Ag nanoparticle-functionalized ZnO:Ag nanocolumnar films. The highest responses to VOCs, in particular to (CH3)(2) CHOH, were obtained at a low operating temperature (250 degrees C) for the samples synergistically enhanced with dopants and nanoparticles simultaneously. In addition, the response times, particularly the recovery times, are greatly reduced for the fully modified nanocolumnar thin films for a wide range of operating temperatures. The adsorption of propanol, acetone, methane, and hydrogen at various surface sites of the Ag-doped Ag-8/ZnO(0001) surface has been examined with the density functional theory (DFT) calculations to understand the preference for organic compounds and to confirm experimental results. The response of the synergistically enhanced sensors to gas molecules containing certain functional groups is in excellent agreement with density functional theory calculations performed in this work too. This new fabrication strategy can underpin the next generation of advanced materials for gas sensing applications and prevent VOC levels that are hazardous to human health and can cause environmental damages.
机译:对于高度选择性和敏感传感器的纳米材料朝向挥发性有机化合物(VOC)的特定气体分子在开发新一代检测器装置方面最重要,例如,对于疾病的生物标志物以及连续的空气质量监测。在这里,我们为工程传感器提出了一种创新的制备方法,其允许全面控制掺杂剂浓度和柱状物质表面的纳米颗粒官能化。这种强大的设计概念的主要结果在于对感兴趣的VOC的传感器表面的反应性进行微调。首先,从化学溶液合成纳米典型和分布均匀的Ag掺杂的氧化锌(ZnO:Ag)薄膜,并且在第二阶段,使用气体聚集源沉积所需尺寸的贵纳纳米粒子,确保无渗透路径在它们之间形成。研究的典型样品是Ag掺杂的和Ag纳米颗粒官能化ZnO:Ag纳米型膜。在低工作温度(250℃)的低工作温度(250℃)中获得最高响应VOC,特别是用于同时用掺杂剂和纳米颗粒协同增强的低操作温度(250℃)。另外,对于各种操作温度的完全改性的纳米典型薄膜,响应时间,特别是恢复时间大大降低。已经用密度泛函理论(DFT)计算,研究了丙醇,丙酮,甲烷和氢气在Ag掺杂的Ag-8 / ZnO(0001)表面的各种表面位点处的吸附,以了解有机化合物的偏好和确认实验结果。协同增强的传感器对含有某些官能团的气体分子的响应是在这项工作中进行的密度泛函理论计算的优异协议。这种新的制造策略可以支持下一代用于气体传感应用的先进材料,并防止对人类健康有害的VOC水平,并可能导致环境损害。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号