...
首页> 外文期刊>ACS applied materials & interfaces >Facile and Highly Effective Synthesis of Controllable Lattice Sulfur-Doped Graphene Quantum Dots via Hydrothermal Treatment of Durian
【24h】

Facile and Highly Effective Synthesis of Controllable Lattice Sulfur-Doped Graphene Quantum Dots via Hydrothermal Treatment of Durian

机译:通过水热处理榴莲的温度和高效合成可控晶格硫掺杂石墨烯量子点

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Recently, the biomass "bottom-up" approach for the synthesis of graphene quantum dots (GQDs) has attracted broad interest because of the outstanding features, including low-cost, rapid, and environmentally friendly nature. However, the low crystalline quality of products, substitutional doping with heteroatoms in lattice, and ambiguous reaction mechanism strongly challenge the further development of this technique. Herein, we proposed a facile and effective strategy to prepare controllable sulfur (S) doping in GQDs, occurring in a lattice substitution manner, by hydrothermal treatment of durian with platinum catalyst. S atoms in GQDs are demonstrated to exist in the thiophene structure, resulting in good optical and chemical stabilities, as well as ultrahigh quantum yield. Detailed mechanism of the hydrothermal reaction progress was investigated. High-efficiency reforming cyclization provided by platinum was evidenced by the coexistence of diversified sp(2)-fused heterocyclic compounds and thiophene derivatives. Moreover, we also demonstrated that saccharides in durian with small molecular weight (1000 Da) is the main carbon source for the forming GQDs. Because of the desulfurizing process, controllable photoluminescence properties could be achieved in the as-prepared GQDs via tuning doping concentrations.
机译:最近,由于优异的特征,包括低成本,快速和环保性质,最近,对石墨烯量子点(GQDS)合成的“自下而上”方法引起了广泛的利益。但是,产品的低结晶质量,用晶格中的杂原子替代掺杂,含糊不清的反应机制强烈挑战这种技术的进一步发展。在此,我们提出了一种容易和有效的策略,以制备在GQD中的可控硫(S),以晶格取代方式发生,通过铂催化剂的水热处理。 GQDS中的S原子被证明存在于噻吩结构中,导致光学和化学稳定性良好,以及超高量子产率。研究了水热反应进程的详细机制。通过多样化的SP(2) - 用杂环化合物和噻吩衍生物的共存,通过铂提供的高效率重整环化。此外,我们还证明了含量小分子量(<1000Da)的榴莲中的糖是形成GQD的主要碳源。由于脱硫过程,可控制的光致发光性能可以通过调节掺杂浓度在制备的GQD中实现。

著录项

  • 来源
    《ACS applied materials & interfaces》 |2018年第6期|共10页
  • 作者单位

    Ningbo Univ Fac Sci Dept Microelect Sci &

    Engn Ningbo 315211 Zhejiang Peoples R China;

    Fudan Univ Dept Mat Sci Shanghai 200433 Peoples R China;

    Ningbo Univ Fac Sci Dept Microelect Sci &

    Engn Ningbo 315211 Zhejiang Peoples R China;

    Chinese Acad Sci Inst Semicond State Key Lab Integrated Optoelect Beijing 100083 Peoples R China;

    Peking Univ Sch Phys Int Ctr Quantum Mat Beijing 100871 Peoples R China;

    Ningbo Univ Fac Sci Dept Microelect Sci &

    Engn Ningbo 315211 Zhejiang Peoples R China;

    Chinese Acad Sci Shanghai Inst Microsyst &

    Informat Technol State Key Lab Funct Mat Informat Shanghai 200050 Peoples R China;

    Chinese Acad Sci Shanghai Inst Microsyst &

    Informat Technol State Key Lab Funct Mat Informat Shanghai 200050 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    graphene quantum dots; photoluminescence; lattice doping; quantum yield; biocompatibility;

    机译:石墨烯量子点;光致发光;格子掺杂;量子产量;生物相容性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号