...
首页> 外文期刊>ACS applied materials & interfaces >Integrated Energy Aerogel of N,S-rGO/WSe2/NiFe-LDH for Both Energy Conversion and Storage
【24h】

Integrated Energy Aerogel of N,S-rGO/WSe2/NiFe-LDH for Both Energy Conversion and Storage

机译:用于能量转换和储存的N,S-RGO / WSE2 / NIFE-LDH的集成能量气凝胶

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

High-performance active materials for energy-storage and energy-conversion applications require a novel class of electrodes: ones with a structure conducive to conductivity, large specific surface area, high porosity, and mechanical robustness. Herein, we report the design and fabrication of a new ternary hybrid aerogel. The process entails an in situ assembly of 2D WSe2 nanosheets and NiFe-LDH nanosheets on a 3D N,S-codoped graphene framework, accomplished by a facile hydrothermal method and electrostatic self-assembly technology. The obtained nanocomposite architecture maximizes synergistic effects among its three 2D-layer components. To assess the performance of this hybrid material, we deployed it as an advanced electrode in overall water splitting and in a supercapacitor. Results in both scenarios attest to its excellent electrochemical properties. Specifically, serving as a catalyst in an oxygen evolution reaction, our nanocomposite requires overpotentials of 1.48 and 1.59 V to obtain current densities of 10 and 100 mA cm(-2), respectively. The hybrid material also efficiently electrocatalyzes hydrogen evolution reactions in base solution, necessitating overpotentials of 50 and 237 mV for current densities of 1.0 and 100 mA cm(-2), respectively. The 3D hybrid, when applied to a symmetric supercapacitor device, achieves 125.6 F g(-1) capacitance at 1 A g(-1) current density. In summary, our study elucidates a new strategy to maximize efficiency via synergetic effects that is likely applicable to other 2D materials.
机译:用于储能和能量转换应用的高性能活性材料需要一种新颖的电极:具有用于电导率的结构,大的比表面积,高孔隙度和机械稳健性的结构。在此,我们报告了新的三元杂交气凝胶的设计和制造。该过程在3D N,S编码的石墨烯框架上造成2D WSE2纳米片和NIFE-LDH纳米纸片的原位组装,通过容易水热法和静电自组装技术完成。所获得的纳米复合架构最大化其三个2D层组分之间的协同作用。为了评估这种混合材料的性能,我们将其部署为整个水分裂和超级电容器中的先进电极。这两种情况都证明了其优异的电化学性质。具体地,用作氧化反应中的催化剂,我们的纳米复合材料需要1.48和1.59V的过电位,以获得10和100mA cm(-2)的电流密度。杂化材料还有效地在基础溶液中电催化在碱溶液中,需要分别为1.0和100mA cm(-2)的电流密度的50和237mV的过电位。当应用于对称超级电容器装置时,3D混合动力以1A的电流密度实现125.6f g(-1)电容。总之,我们的研究阐明了一种新的策略,可以通过适用于其他2D材料的协同效应来最大限度地提高效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号