...
首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles
【24h】

A new concept of thermal management system in Li-ion battery using air cooling and heat pipe for electric vehicles

机译:锂离子电池热管理系统的新概念,采用电动车辆空气冷却热管

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents the concept of a hybrid thermal management system (TMS), including air cooling and heat pipe for electric vehicles (EVs). Mathematical and thermal models are described to predict the thermal behavior of a battery module consisting of 24 cylindrical cells. Details of various thermal management techniques, especially natural air cooling and forced-air cooling TMS are discussed and compared. Moreover, several optimizations comprising the effect of cell spacing, air velocity, different ambient temperatures, and adding a heat pipe with copper sheets (HPCS) are proposed. The mathematical models are solved by COMSOL Multiphysics (R), the commercial computational fluid dynamics (CFD) software. The simulation results are validated against experimental data indicating that the proposed cooling method is robust to optimize the TMS with HPCS, which provides guidelines for further design optimization for similar systems. Results indicate that the maximum module temperature for the cooling strategy using forced-air cooling, heat pipe, and HPCS reaches 42.4 degrees C, 37.5 degrees C, and 37.1 degrees C which can reduce the module temperature compared with natural air cooling by up to 34.5%, 42.1%, and 42.7% respectively. Furthermore, there is 39.2%, 66.5%, and 73.4% improvement in the temperature uniformity of the battery module for forced-air cooling, heat pipe, and HPCS respectively.
机译:本文介绍了混合动力热管理系统(TMS)的概念,包括用于电动车辆的空气冷却和热管(EVS)。描述了数学和热模型来预测由24个圆柱形电池组成的电池模块的热行为。讨论了各种热管理技术,特别是天然空气冷却和强制空气冷却TMS的细节。此外,提出了几种优化,包括细胞间距,空气速度,不同环境温度和用铜板(HPC)添加热管的效果。数学模型由COMSOL MultiphySics(R),商业计算流体动力学(CFD)软件解决。仿真结果针对实验数据验证,该实验数据表明所提出的冷却方法是强大的,以优化具有HPC的TMS,这提供了用于类似系统的进一步设计优化的指导。结果表明,使用强制 - 空气冷却,热管和HPC的冷却策略的最大模块温度达到42.4摄氏度,37.5摄氏度和37.1摄氏度,可以减少模块温度,与自然空气冷却至多34.5 %,42.1%和42.7%。此外,电池模块的温度均匀性分别有39.2%,66.5%和73.4%,分别用于强制空气冷却,热管和HPC的电池模块的温度均匀性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号