...
首页> 外文期刊>Icarus: International Journal of Solar System Studies >Survivability of copper projectiles during hypervelocity impacts in porous ice: A laboratory investigation of the survivability of projectiles impacting comets or other bodies
【24h】

Survivability of copper projectiles during hypervelocity impacts in porous ice: A laboratory investigation of the survivability of projectiles impacting comets or other bodies

机译:多孔冰中超高速撞击过程中铜弹丸的生存能力:对撞击彗星或其他物体的弹丸生存能力的实验室研究

获取原文
获取原文并翻译 | 示例
           

摘要

During hypervelocity impact (>a few km s(-1)) the resulting cratering and/or disruption of the target body often outweighs interest on the outcome of the projectile material, with the majority of projectiles assumed to be vaporised. However, on Earth, fragments, often metallic, have been recovered from impact sites, meaning that metallic projectile fragments may survive a hypervelocity impact and still exist within the wall, floor and/or ejecta of the impact crater post-impact. The discovery of the remnant impactor composition within the craters of asteroids, planets and comets could provide further information regarding the impact history of a body. Accordingly, we study in the laboratory the survivability of 1 and 2 mm diameter copper projectiles fired onto ice at speeds between 1.00 and 7.05 km s(-1). The projectile was recovered intact at speeds up to 1.50 km s(-1), with no ductile deformation, but some surface pitting was observed. At 2.39 km s(-1), the projectile showed increasing ductile deformation and broke into two parts. Above velocities of 2.60 km s(-1) increasing numbers of projectile fragments were identified post impact, with the mean size of the fragments decreasing with increasing impact velocity. The decrease in size also corresponds with an increase in the number of projectile fragments recovered, as with increasing shock pressure the projectile material is more intensely disrupted, producing smaller and more numerous fragments. The damage to the projectile is divided into four classes with increasing speed and shock pressure: (1) minimal damage, (2) ductile deformation, start of break up, (3) increasing fragmentation, and (4) complete fragmentation. The implications of such behaviour is considered for specific examples of impacts of metallic impactors onto Solar System bodies, including LCROSS impacting the Moon, iron meteorites onto Mars and NASA's "Deep Impact" mission where a spacecraft impacted a comet. (C) 2016 The Authors. Published by Elsevier Inc.
机译:在超高速撞击(>几千米s(-1))期间,目标物体的弹坑和/或破裂往往对弹丸材料的结局产生重大影响,并且大多数弹丸被认为已汽化。但是,在地球上,通常是金属的碎片已从撞击地点回收,这意味着金属弹丸碎片可能会在超高速撞击中幸存下来,并且仍然存在于撞击后撞击坑的壁,地板和/或喷口内。在小行星,行星和彗星陨石坑内发现残留的撞击物成分,可以提供有关物体撞击历史的更多信息。因此,我们在实验室研究了以1.00至7.05 km s(-1)的速度向冰上射击的直径为1毫米和2毫米的铜弹丸的生存能力。弹丸以1.50 km s(-1)的速度完好无损地恢复,没有塑性变形,但观察到一些表面点蚀。在2.39 km s(-1),弹丸的塑性变形增加,并分为两部分。超过2.60 km s(-1)的速度,在撞击后发现弹丸碎片的数量增加,碎片的平均大小随撞击速度的增加而减小。尺寸的减小还对应于回收的弹丸碎片数量的增加,因为随着冲击压力的增加,弹丸材料被更强烈地破坏,产生更小和更多的碎片。随着速度和冲击压力的增加,弹丸的损坏分为四类:(1)最小的损坏;(2)韧性变形,破裂的开始;(3)破碎的增加;(4)破碎的完全。这种行为的影响被认为是金属撞击器撞击太阳系物体的特定示例,包括LCROSS撞击月球,铁陨石撞击火星以及NASA的“深度撞击”任务,航天器撞击了彗星。 (C)2016作者。由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号