首页> 外文期刊>International Journal of Fluid Power >THE IMPACT OF AXIAL PISTON MACHINES MECHANICAL PARTS CONSTRAINT CONDITIONS ON THE THERMO-ELASTOHYDRODYNAMIC LUBRICATION ANAL-YSIS OF THE FLUID FILM INTERFACES
【24h】

THE IMPACT OF AXIAL PISTON MACHINES MECHANICAL PARTS CONSTRAINT CONDITIONS ON THE THERMO-ELASTOHYDRODYNAMIC LUBRICATION ANAL-YSIS OF THE FLUID FILM INTERFACES

机译:轴向活塞机械零件约束条件对流体膜界面热弹性流体动力学润滑分析的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The authors analyze the lubricating interfaces of axial piston machines considering thermo-elastohydrodynamic (TEHL) lubrication characteristics. The fluid film geometry in these conditions is strongly influenced by the surface elastic deformation of the solid boundaries. The surface elastic deformations derive from the high dynamic pressures developing in the fluid film, necessary to balance the external oscillating loads. Furthermore, elastic deflections of the fluid film develop from the thermal expansion of the solid bodies, caused by the heat generated due to viscous shear of the fluid film. The accurate determination of the solid boundaries elastic deformation is a key element to predict the fluid film geometry and consequently the lubricating interface performance. When solving for the static elastic deformation of a solid body, constraint conditions must be imposed to avoid rigid body motion. Constraint conditions strongly influence the elastic deformation analysis; therefore their definition must reflect and interpret the mechanical body real conditions. In an axial piston machine all the mechanical bodies defining the fluid film geometry are loosely constrained and significant linear displacements and rotations are intentionally allowed. Hence, the definition of proper constraint conditions for the solid bodies is not a trivial problem and advanced constraint conditions must be considered and implemented. In the fully-coupled numerical models of the lubricating interfaces developed by the research group of the authors, finite element analysis is used to determine the mechanical bodies' elastic deformations. The finite element analysis is coupled with finite volume models of the fluid film, to study the impact of the surface elastic deformations on the interfaces behavior. In this paper, the authors present and discuss the implementation of the inertia relief method on the finite element elastic deformation analysis of the main mechanical parts of an axial piston machine. Inertia relief allows simulating unconstrained structures in a static analysis using their inertia to resist the applied loads. Typical applications of this method include modeling an aircraft in flight, a submarine under water or a satellite in space. The impact of this method on the elastic deformation of the fluid film solid boundary surfaces is shown and compared to standard constraint conditions. In addition, the influence of the inertia relief method on the piston/cylinder interface fluid film behavior is discussed, presenting numerical results for a fully-coupled TEHL simulation over one shaft revolution of a special test pump capable of measuring the piston/cylinder axial viscous friction force. The improved accuracy of the piston/cylinder fully-coupled model including inertia relief effect is presented, comparing simulation results with friction force measurements.
机译:作者分析了考虑热弹流体力学(TEHL)润滑特性的轴向活塞机的润滑界面。在这些条件下,流体膜的几何形状受到固体边界的表面弹性变形的强烈影响。表面弹性变形源自流体膜中形成的高动态压力,这是平衡外部振荡负载所必需的。此外,由于由于流体膜的粘性剪切而产生的热量,由固体的热膨胀产生了流体膜的弹性挠曲。准确确定固体边界弹性变形是预测液膜几何形状以及润滑界面性能的关键因素。解决固体的静态弹性变形时,必须施加约束条件以避免刚体运动。约束条件强烈影响弹性变形分析。因此,它们的定义必须反映和解释机械体的实际条件。在轴向活塞机中,限定流体膜几何形状的所有机械体都受到松散约束,并有意允许显着的线性位移和旋转。因此,为实体定义适当的约束条件不是一个小问题,必须考虑并实施先进的约束条件。在作者的研究小组开发的润滑界面的全耦合数值模型中,使用有限元分析来确定机械体的弹性变形。有限元分析与流体膜的有限体积模型相结合,以研究表面弹性变形对界面行为的影响。在本文中,作者介绍并讨论了惯性消除方法在轴向柱塞机主要机械零件的有限元弹性变形分析中的实现。惯性释放允许在静态分析中使用惯性来模拟不受约束的结构以抵抗施加的载荷。该方法的典型应用包括对飞行中的飞机,水下潜艇或太空中的卫星进行建模。显示了该方法对流体膜固体边界表面弹性变形的影响,并将其与标准约束条件进行了比较。此外,还讨论了惯性释放方法对活塞/气缸界面流体膜行为的影响,并给出了在能够测量活塞/气缸轴向粘性的特殊试验泵的一轴旋转上进行全耦合TEHL仿真的数值结果。摩擦力。通过将仿真结果与摩擦力测量值进行比较,提出了包括惯性释放效应在内的活塞/缸全耦合模型的改进精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号