首页> 外文期刊>International Journal of Astrobiology >Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): Phyllosilicate and sulfate analogues to Mars mission landing sites
【24h】

Mineralogical, chemical, organic and microbial properties of subsurface soil cores from Mars Desert Research Station (Utah, USA): Phyllosilicate and sulfate analogues to Mars mission landing sites

机译:来自火星沙漠研究站(美国犹他州)的地下土壤核心的矿物学,化学,有机和微生物特性:与火星任务登陆点类似的硅硅酸盐和硫酸盐类似物

获取原文
获取原文并翻译 | 示例
           

摘要

We collected and analysed soil cores from four geologic units surrounding Mars Desert Research Station (MDRS) Utah, USA, including Mancos Shale, Dakota Sandstone, Morrison formation (Brushy Basin member) and Summerville formation. The area is an important geochemical and morphological analogue to terrains on Mars. Soils were analysed for mineralogy by a Terra X-ray diffractometer (XRD), a field version of the CheMin instrument on the Mars Science Laboratory (MSL) mission (2012 landing). Soluble ion chemistry, total organic content and identity and distribution of microbial populations were also determined. The Terra data reveal that Mancos and Morrison soils are rich in phyllosilicates similar to those observed on Mars from orbital measurements (montmorillonite, nontronite and illite). Evaporite minerals observed include gypsum, thenardite, polyhalite and calcite. Soil chemical analysis shows sulfate the dominant anion in all soils and SO4CO3, as on Mars. The cation pattern Na>Ca>Mg is seen in all soils except for the Summerville where Ca>Na. In all soils, SO4 correlates with Na, suggesting sodium sulfates are the dominant phase. Oxidizable organics are low in all soils and range from a high of 0.7% in the Mancos samples to undetectable at a detection limit of 0.1% in the Morrison soils. Minerals rich in chromium and vanadium were identified in Morrison soils that result from diagenetic replacement of organic compounds. Depositional environment, geologic history and mineralogy all affect the ability to preserve and detect organic compounds. Subsurface biosphere populations were revealed to contain organisms from all three domains (Archaea, Bacteria and Eukarya) with cell density between 3.0-10~6 and 1.8-10~7 cells ml ~1 at the deepest depth. These measurements are analogous to data that could be obtained on future robotic or human Mars missions and results are relevant to the MSL mission that will investigate phyllosilicates on Mars.
机译:我们从美国犹他州火星沙漠研究站(MDRS)周围的四个地质单元收集并分析了土壤核心,包括Mancos页岩,Dakota砂岩,Morrison地层(毛刷盆地成员)和Summerville地层。该地区是火星地形的重要地球化学和形态类似物。通过Terra X射线衍射仪(XRD)对土壤进行了矿物学分析,XRD是CheMin仪器在火星科学实验室(MSL)任务(2012年着陆)上的现场版本。还确定了可溶性离子化学,总有机含量以及微生物种群的身份和分布。 Terra数据显示,Mancos和Morrison土壤富含叶硅酸盐,类似于在火星上通过轨道测量(蒙脱石,绿脱石和伊利石)观察到的那些。观察到的蒸发矿物包括石膏,芒硝,多卤石和方解石。土壤化学分析表明,与火星一样,硫酸盐是所有土壤中的主要阴离子,SO4 CO3也是如此。除Summerville的Ca> Na以外,在所有土壤中均可见到阳离子型态Na> Ca> Mg。在所有土壤中,SO4与Na相关,表明硫酸钠是主要相。在所有土壤中可氧化的有机物含量都很低,从Mancos样品中的0.7%到在Morrison土壤中的0.1%的检出限都无法检测到。在莫里森土壤中发现了富含铬和钒的矿物质,这是由于有机化合物的成岩作用所致。沉积环境,地质历史和矿物学都会影响保存和发现有机化合物的能力。揭示了地下生物圈种群包含所有三个域(Archaea,细菌和Eukarya)的生物,最深处的细胞密度在3.0-10〜6和1.8-10〜7个细胞ml〜1之间。这些测量结果类似于在未来的机器人或人类火星飞行任务中可能获得的数据,并且结果与将研究火星上层状硅酸盐的MSL任务有关。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号