...
首页> 外文期刊>International Journal of Precision Engineering and Manufacturing >Advanced Porous Scaffold Design using Multi-Void Triply Periodic Minimal Surface Models with High Surface Area to Volume Ratios
【24h】

Advanced Porous Scaffold Design using Multi-Void Triply Periodic Minimal Surface Models with High Surface Area to Volume Ratios

机译:使用具有高表面积与体积比的多空隙三重周期周期性最小表面模型进行高级多孔支架设计

获取原文
获取原文并翻译 | 示例
           

摘要

Creating biophysically and biologically desirable porous scaffolds has always been one of the greatest challenges in tissue engineering (TE). Advanced additive manufacture (AM) methods such as three-dimensional (3D) printing techniques have established remarkable improvements in the fabrication of porous scaffolds and structures close in architecture to biological tissue. Such fabrication techniques have opened new areas of research in TE. Recently, it was shown that porous scaffolds which are mathematically designed by using triply periodic minimal surface (TPMS) pore geometry and fabricated through 3D printing techniques have remarkably high cell viability and mechanical strength when compared with conventional scaffolds. The enhanced cell adhesion, migration, and proliferation of TPMS-based scaffolds arise from the high surface area to volume ratio (SA/V ratio) that is a basic and fundamental concept of biology. Here, we report the design of multi-void TPMS-based scaffolds that dramatically increase the SA/V ratio of conventional TPMS scaffolds. Our findings suggest that the proposed novel design methodology can be applied to create a variety of computational models for prototyping and printing of biomimetic scaffolds and bioartificial tissues.
机译:在生物学上和生物学上理想的多孔支架的制造一直是组织工程学(TE)的最大挑战之一。先进的增材制造(AM)方法(例如三维(3D)打印技术)已在多孔支架和结构上与生物组织接近的结构的制造中建立了显着的进步。这种制造技术为TE开辟了新的研究领域。近来,显示了与常规支架相比,通过使用三重周期性最小表面(TPMS)孔几何学设计并通过3D打印技术制造的多孔支架具有显着高的细胞生存力和机械强度。 TPMS基支架的增强的细胞粘附,迁移和增殖源自高表面积体积比(SA / V比),这是生物学的基本概念。在这里,我们报告了基于多空隙TPMS的支架的设计,该支架大大提高了传统TPMS支架的SA / V比。我们的发现表明,所提出的新颖设计方法可以应用于创建各种计算模型,以用于仿生支架和生物人工组织的原型设计和印刷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号