...
首页> 外文期刊>European Journal of Soil Science >Simulating decomposition of 14C-labelled fresh organic matter in bulk soil and soil particle fractions at various temperatures and moisture contents.
【24h】

Simulating decomposition of 14C-labelled fresh organic matter in bulk soil and soil particle fractions at various temperatures and moisture contents.

机译:在不同温度和水分含量下,模拟散装土壤中的 14 C标记的新鲜有机物和土壤颗粒级分。

获取原文
获取原文并翻译 | 示例
           

摘要

14C-labelled fresh organic matter (FOM) was homogeneously incorporated into an agricultural topsoil of small total organic carbon (TOC) content in order to perform decomposition batch experiments at temperatures (T) ranging from 5 to 45 degrees C and soil gravimetric water contents (w) ranging from 7 to 35%. After 4-6-month incubation (tend), the residual 14C (Dend) was measured in bulk soil (0-2000 micro m) and soil particle size fractions of 0-53, 53-200 and 200-2000 micro m by chemical dispersion and sieving. The 14C-FOM decomposition kinetics from soil were fitted either by a single first-order reaction (rate constant, k0-2000) assuming only a one-pool model in the bulk soil or by consecutive first-order reactions (rate constants, k0-53 and k53-2000) assuming a two-pool model in the bulk soil aggregate structure. In the latter case, a two-step reaction mechanism involving a FOM particle-size decrease along the soil fractions was considered where k0-53 was assumed to be a limiting rate constant. The 14C-FOM decomposition kinetics was described for the experimental temperature and water ranges by Arrhenius and Michaelis-Menten relationships, respectively. Additionally, the results obtained by the adapted Arrhenius physicochemical relationship were compared with the function proposed by Kirschbaum (1995). Scaling functions Tm and wm were established and can be used to simulate FOM decomposition rates under different temperature and moisture level conditions. Modelling based on consecutive first-order reactions supported the hypothesis that the circulation (inflow and outflow) of C into the soil particle small-size fractions (<53 micro m) controls the total C mineralization.
机译:为了在温度( T )在5至45摄氏度之间,土壤重量含水量( w )在7至35%之间。孵育4-6个月后( t end ),剩余的 14 C( D end )是通过化学分散和筛分法在散装土壤(0-2000微米)和0-53、53-200和200-2000微米的土壤粒径级分中测量的。假设土壤的 14 C-FOM分解动力学通过单个一级反应(速率常数, k 0-2000 )拟合在散装土壤中或通过连续的一阶反应(速率常数 k 0-53 和 k 53-2000 ),在散装土壤团聚体结构中采用两池模型。在后一种情况下,考虑了沿着土壤部分减小FOM粒度的两步反应机理,其中 k 0-53 被认为是极限速率不变。通过Arrhenius和Michaelis-Menten关系分别描述了实验温度和水域范围内的 14 C-FOM分解动力学。此外,将通过改编的阿伦尼乌斯(Arrhenius)理化关系获得的结果与Kirschbaum(1995)提出的功能进行了比较。建立了缩放函数 T m 和 w m ,可用于模拟在不同温度和温度下的FOM分解速率湿度水平条件。基于连续一阶反应的模型支持以下假设:碳向土壤颗粒小颗粒部分(<53微米)的循环(流入和流出)控制了总碳的矿化作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号