...
首页> 外文期刊>Experiments in Fluids: Experimental Methods and Their Applications to Fluid Flow >Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow
【24h】

Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow

机译:湍流边界层流中超疏水表面减阻机理

获取原文
获取原文并翻译 | 示例
           

摘要

The drag-reducing property of a superhydrophobic surface is investigated along with its mechanism. A superhydrophobic surface with micro-nanotextures is fabricated and tested using SEM and contact angle measurement. Velocity distributions in the turbulent boundary layer with a superhydrophobic surface and a smooth surface are measured by particle image velocimetry at Re-theta = 810, 990, and 1220. An upward lift effect on the velocity profile caused by the rugged air layer on the superhydrophobic surface is observed, which indicates drag reduction. Estimated by the wall shear stress, a drag reduction of 10.1, 20.7, and 24.1 % is observed for Re-theta equal to 810, 990, and 1220, respectively. The drag reduction is caused mainly by slip on the interface and modifications in the turbulent structures, and the latter plays a more important role as Re-theta increases. Suppressions are observed in turbulence intensities, and reductions in the total Reynolds shear stress T-turb(+) are 2.5, 18.5, and 23.1 % for Re-theta = 810, 990, and 1220, respectively. Vortex fields above the superhydrophobic and smooth surfaces at Re-theta = 990 are investigated. Vortexes are weakened and lifted upward by the superhydrophobic surface, and the position of the maximum swirling strength is lifted 0.17 delta (delta is the boundary layer thickness) upward in the wall-normal direction. This modification in turbulence structures contributes significantly to the drag reduction in the turbulent boundary layer flow.
机译:研究了超疏水表面的减阻性能及其机理。制备了具有纳米微纹理的超疏水表面,并使用SEM和接触角测量对其进行了测试。在Re-theta = 810、990和1220处,通过粒子图像测速仪测量了具有超疏水表面和光滑表面的湍流边界层中的速度分布。由超疏水的崎air空气层引起的速度分布上的向上升起效应观察到表面,表明减阻。通过壁切应力估算,对于Re-theta,分别等于810、990和1220的阻力减小了10.1、20.7和24.1%。阻力的减少主要是由界面上的滑移和湍流结构的变化引起的,并且随着Re-theta的增加,湍流结构起着更重要的作用。在湍流强度中观察到抑制,并且对于Re-theta = 810、990和1220,总雷诺剪切应力T-turb(+)的降低分别为2.5%,18.5%和23.1%。研究了Re-theta = 990处超疏水和光滑表面上方的涡流场。涡旋被超疏水性表面削弱并向上提升,最大涡旋强度的位置沿壁法线方向提升了0.17德尔塔(δ是边界层厚度)。湍流结构的这种改变大大有助于减小湍流边界层流中的阻力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号