...
首页> 外文期刊>Bioinspiration & biomimetics >Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles
【24h】

Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles

机译:炸鱼和薯条:将神经网络模型实施到计算机芯片中,以最大程度地提高自动驾驶水下航行器的游泳效率

获取原文
获取原文并翻译 | 示例
           

摘要

Recent developments in the design and propulsion of biomimetic autonomous underwater vehicles (AUVs) have focused on boxfish as models (e. g. Deng and Avadhanula 2005 Biomimetic micro underwater vehicle with oscillating fin propulsion: system design and force measurement Proc. 2005 IEEE Int. Conf. Robot. Auto. (Barcelona, Spain) pp 3312 - 7). Whilst such vehicles have many potential advantages in operating in complex environments (e. g. high manoeuvrability and stability), limited battery life and payload capacity are likely functional disadvantages. Boxfish employ undulatory median and paired fins during routine swimming which are characterized by high hydromechanical Froude efficiencies (approximate to 0.9) at low forward speeds. Current boxfish- inspired vehicles are propelled by a low aspect ratio, ' plate- like' caudal fin (ostraciiform tail) which can be shown to operate at a relatively low maximum Froude efficiency (approximate to 0.5) and is mainly employed as a rudder for steering and in rapid swimming bouts (e. g. escape responses). Given this and the fact that bioinspired engineering designs are not obligated to wholly duplicate a biological model, computer chips were developed using a multilayer perception neural network model of undulatory fin propulsion in the knifefish Xenomystus nigri that would potentially allow an AUV to achieve high optimum values of propulsive efficiency at any given forward velocity, giving a minimum energy drain on the battery. We envisage that externally monitored information on flow velocity (sensory system) would be conveyed to the chips residing in the vehicle's control unit, which in turn would signal the locomotor unit to adopt kinematics (e. g. fin frequency, amplitude) associated with optimal propulsion efficiency. Power savings could protract vehicle operational life and/ or provide more power to other functions (e. g. communications).
机译:仿生自动驾驶水下航行器(AUV)的设计和推进方面的最新进展集中在作为模型的硬鳞鱼上(例如Deng和Avadhanula 2005带有摆动鳍推进的仿生微型水下航行器:系统设计和力测量Proc。2005 IEEE Int。Conf。Robot自动(西班牙巴塞罗那)第3312-7页)。尽管这样的车辆在复杂的环境中操作具有许多潜在的优点(例如,高机动性和稳定性),但是有限的电池寿命和有效载荷容量可能是功能上的缺点。 fish鱼在例行游泳期间使用起伏不定的中鳍和成对的鳍,其特征是在低前进速度下具有高水力机械弗洛德效率(约0.9)。当前受箱fish鱼启发的飞行器由低纵横比的“板状”尾鳍(肋骨尾)推动,可以证明其在相对较低的最大弗洛德效率(约0.5)下运行,并且主要用作舵转向和快速游泳比赛(例如逃跑反应)。考虑到这一点,并且没有受到生物启发的工程设计完全复制生物模型的事实,因此,使用刀鱼Xenomystus nigri中的波动鳍推进的多层感知神经网络模型开发了计算机芯片,这可能使AUV达到较高的最佳值。在任何给定的前进速度下的推进效率,使电池的能量消耗最小。我们设想将关于流速(传感器系统)的外部监控信息传送到位于车辆控制单元中的芯片,这反过来将向运动单元发出信号以采用与最佳推进效率相关的运动学(例如鳍片频率,振幅)。节能可以延长车辆的使用寿命和/或为其他功能(例如通信)提供更多的功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号