...
首页> 外文期刊>Materialpruefung: Werkstoffe und Bauteile, Forschung Prufung Anwendung >Effect of crack configuration and pre-crack length on stress intensity factors: Study of the tearing mode using a three-dimensional finite element model
【24h】

Effect of crack configuration and pre-crack length on stress intensity factors: Study of the tearing mode using a three-dimensional finite element model

机译:裂纹形态和裂纹前长度对应力强度因子的影响:使用三维有限元模型研究撕裂模式

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, the results for the stress intensity factor of a mode III (tearing mode) have been investigated using the method of finite element analysis. A compact tension specimen containing a pre-crack and subjected to out-of-plane tearing loads has been used. A three-dimensional finite element analysis (FEA) model using the AN SYS program has been built for specimens made of different bio-medical materials such as stainless steel, titanium, alumina, high density polyethylene(HDPE) and polymethyl methacrylate(PMMA). Such materials are used for hip and knee replacement and for dental implants. The effects of notch angle, notch tip radius and pre-crack length on the stress intensity factor for the mode III have been studied. The model was extended to study the effect of crack and bonding line separation distance on stress intensity factors for specimens made of different homogeneous materials such as stainless steel bonding with epoxy as a filler material. The number of elements along the crack front and crack tip has been varied to determine its effects on the stress intensity factors. It is concluded that the pre-crack must be greater than or equal to 33% of the total crack length and the notch must be a blunt notch in order to obtain the stress intensity factor, K{sub}III, independently, of the crack notch angle. However, the stress intensity factor is independent of the crack and bonding line separation distance when it is less than or equal to 15 % of the specimen width. The results for the stress intensity factors, K{sub}III, are obtained using a linear elastic fracture mechanics (LEFM) approach.
机译:在本文中,使用有限元分析方法研究了模式III(撕裂模式)的应力强度因子的结果。使用了包含预裂纹并承受平面外撕裂载荷的紧凑型拉伸试样。使用AN SYS程序建立了三维有限元分析模型,用于由不同生物医学材料制成的标本,例如不锈钢,钛,氧化铝,高密度聚乙烯(HDPE)和聚甲基丙烯酸甲酯(PMMA)。这种材料用于髋关节和膝关节置换以及牙科植入物。研究了切口角,切口尖端半径和裂纹前长度对模式III应力强度因子的影响。扩展了该模型,以研究由不同均质材料制成的样品(如不锈钢与环氧树脂作为填充材料的粘结)的裂纹和粘结线间距对应力强度因子的影响。沿裂纹前沿和裂纹尖端的元素数量已发生变化,以确定其对应力强度因子的影响。得出的结论是,预裂纹必须大于或等于总裂纹长度的33%,并且该槽口必须是钝槽口,以便独立于裂纹获得应力强度因子K {sub} III。切角。但是,当应力强度因子小于或等于试样宽度的15%时,应力强度因子与裂纹和粘结线的分离距离无关。应力强度因子K {sub} III的结果是使用线性弹性断裂力学(LEFM)方法获得的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号