...
首页> 外文期刊>Measurement Science & Technology >Direct measurement of surface shape for validation of indentation deformation and plasticity length-scale effects: a comparison of methods
【24h】

Direct measurement of surface shape for validation of indentation deformation and plasticity length-scale effects: a comparison of methods

机译:直接测量表面形状以验证压痕变形和塑性长度尺度效应:方法的比较

获取原文
获取原文并翻译 | 示例
           

摘要

It is ironic that recent developments in instrumented indentation, such as the drive to obtain tensile properties from indentation data and to understand length-scale effects in plasticity, have seen a return to direct imaging of indentations. Significant uncertainties in contact size arise when using contact mechanics calculations that do not take into account the lateral dilation of elastic recovery (Hou et al 2008 J. Phys. D: Appl. Phys. 41 074006) and important sink-in and pile-up contributions to the contact response (Lim and Chaudhri 1999 Phil. Mag. A 79 2979-3000). High resolution, direct measurement avoids these problems. Accurate wear volume and coating thickness measurements obtained by cap grinding methods also depend on high accuracy and low uncertainty direct measurement methods. The use of metrological atomic force microscopy to measure and certify the shape of indenters is well established (Aldrich-Smith et al 2005 Z. Metallk. 96 1267-71) and is essential for valid mechanical property measurement by instrumented indentation. In this paper, we consider indent measurement and compare three direct measurement techniques: optical microscopy, metrological atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). We compare the relative merits and uncertainties of various 2D and 3D analysis methods with a new analysis method of differentiating 3D data obtained from AFM and CLSM. This new method has the lowest uncertainty (2.8percent for a 50 (mu)m diameter indent at the 95percent confidence level). Better still, it enables objective measurements of indent size that avoid the issues caused by difficult-to-standardize parameters (such as illumination angle, contrast and brightness settings), which strongly affect manual estimates of the edge position of an indentation/crater (Gee et al 2002 NPL Measurement Good Practice Guide No 57).
机译:具有讽刺意味的是,仪器压痕的最新发展,例如从压痕数据获得拉伸性能并了解可塑性的长度尺度效应的驱动力,已回到压痕的直接成像上。使用接触力学计算时,如果未考虑弹性回复的横向膨胀(Hou等,2008 J. Phys。D:Appl。Phys。41 074006)以及重要的下沉和堆积,则接触尺寸会出现明显的不确定性对接触反应的贡献(Lim and Chaudhri 1999 Phil。Mag。A 79 2979-3000)。高分辨率,直接测量避免了这些问题。通过瓶盖研磨方法获得的准确磨损量和涂层厚度测量值还取决于高精度和低不确定性直接测量方法。使用计量原子力显微镜来测量和验证压头的形状已得到广泛确立(Aldrich-Smith等人2005 Z. Metallk。96 1267-71),对于通过仪器压痕进行有效的机械性能测量至关重要。在本文中,我们考虑了压痕测量并比较了三种直接测量技术:光学显微镜,计量原子力显微镜(AFM)和共焦激光扫描显微镜(CLSM)。我们将各种2D和3D分析方法的相对优缺点和不确定性与一种新的区分AFM和CLSM的3D数据的分析方法进行了比较。这种新方法的不确定性最低(在95%的置信度水平下,直径50微米的压痕的不确定度为2.8%)。更妙的是,它能够对压痕尺寸进行客观测量,避免了难以标准化的参数(例如照明角度,对比度和亮度设置)所引起的问题,这些参数会严重影响压痕/凹坑边缘位置的手动估算(Gee (2002年《不良贷款评估良好做法指南》第57号)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号