首页> 外文期刊>Nanotechnology >Engineering the 3D architecture and hydrophobicity of methyltrichlorosilane nanostructures
【24h】

Engineering the 3D architecture and hydrophobicity of methyltrichlorosilane nanostructures

机译:设计甲基三氯硅烷纳米结构的3D结构和疏水性

获取原文
获取原文并翻译 | 示例
           

摘要

Three-dimensional nano-architectures with varying shape, morphology and size were fabricated by the phase separation of methyltrichlorosilane (CH3SiCl3) on commercially available glass and SiO2 substrates. By changing the synthesis conditions, CH3SiCl3 nanostructures evolved from discrete to quasi-network or from fibrous to spherical forms. Individual nanofibers and nanospheres have diameters of 18-90 and 240-300 nm, respectively, while the film thicknesses could reach 320 nm. The possible mechanisms for the three-dimensional growth of nanofibers and nanospheres are proposed. The resultant morphologies exhibited two main energy states: Wenzel and Cassie-Baxter states. Moreover, superhydrophobic surfaces with both high contact angle and high hysteresis resulted from the growth of the nanostructures. The new approaches presented herein are important additions to the current range of surface modification methods and could harness novel physical and chemical properties conducive to optimal performance in biosensing, antistiction, droplet manipulation, drag reduction, protein adsorption, and cell adhesion studies.
机译:通过在市场上可买到的玻璃和SiO2衬底上进行甲基三氯硅烷(CH3SiCl3)的相分离,制造出具有不同形状,形态和尺寸的三维纳米结构。通过改变合成条件,CH3SiCl3纳米结构从离散网络演变为准网络或从纤维形式发展为球形。单个纳米纤维和纳米球的直径分别为18-90和240-300 nm,而膜厚度可能达到320 nm。提出了纳米纤维和纳米球三维生长的可能机理。最终的形态展现出两个主要的能量状态:Wenzel和Cassie-Baxter状态。而且,具有高接触角和高滞后性的超疏水表面是由于纳米结构的生长而产生的。本文介绍的新方法是对当前表面修饰方法范围的重要补充,可以利用新颖的物理和化学特性,有助于在生物传感,抗粘连,液滴操纵,减阻,蛋白质吸附和细胞粘附研究中获得最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号