首页> 外文期刊>Nanotechnology >Enhanced microcontact printing of proteins on nanoporous silica surface
【24h】

Enhanced microcontact printing of proteins on nanoporous silica surface

机译:在纳米多孔二氧化硅表面上增强蛋白质的微接触印刷

获取原文
获取原文并翻译 | 示例
           

摘要

We demonstrate porous silica surface modification, combined with microcontact printing, as an effective method for enhanced protein patterning and adsorption on arbitrary surfaces. Compared to conventional chemical treatments, this approach offers scalability and long-term device stability without requiring complex chemical activation. Two chemical surface treatments using functionalization with the commonly used 3-aminopropyltriethoxysilane (APTES) and glutaraldehyde (GA) were compared with the nanoporous silica surface on the basis of protein adsorption. The deposited thickness and uniformity of porous silica films were evaluated for fluorescein isothiocyanate (FITC)-labeled rabbit immunoglobulin G (R-IgG) protein printed onto the substrates via patterned polydimethlysiloxane (PDMS) stamps. A more complete transfer of proteins was observed on porous silica substrates compared to chemically functionalized substrates. A comparison of different pore sizes (4-6 nm) and porous silica thicknesses (96-200 nm) indicates that porous silica with 4 nm diameter, 57% porosity and a thickness of 96 nm provided a suitable environment for complete transfer of R-IgG proteins. Both fluorescence microscopy and atomic force microscopy (AFM) were used for protein layer characterizations. A porous silica layer is biocompatible, providing a favorable transfer medium with minimal damage to the proteins. A patterned immunoassay microchip was developed to demonstrate the retained protein function after printing on nanoporous surfaces, which enables printable and robust immunoassay detection for point-of-care applications.
机译:我们展示了多孔二氧化硅的表面改性,并与微接触印刷相结合,是增强蛋白质构图和在任意表面上吸附的有效方法。与常规化学处理相比,此方法可提供可扩展性和长期的设备稳定性,而无需复杂的化学活化。在蛋白质吸附的基础上,将使用3-氨基丙基三乙氧基硅烷(APTES)和戊二醛(GA)进行官能化的两种化学表面处理与纳米多孔二氧化硅表面进行了比较。通过图案化的聚二甲基硅氧烷(PDMS)印记在基板上,评估了多孔二氧化硅膜的沉积厚度和均匀性,对异硫氰酸荧光素(FITC)标记的兔免疫球蛋白G(R-IgG)蛋白进行了印刷。与化学官能化的底物相比,在多孔二氧化硅底物上观察到蛋白质的更完全转移。对不同孔径(4-6 nm)和多孔二氧化硅厚度(96-200 nm)的比较表明,具有4 nm直径,57%孔隙率和96 nm厚度的多孔二氧化硅为R-的完全转移提供了合适的环境IgG蛋白。荧光显微镜和原子力显微镜(AFM)均用于蛋白质层表征。多孔二氧化硅层具有生物相容性,可提供有利的传输介质,并且对蛋白质的损害最小。开发了一种模式化的免疫测定微芯片,以证明在纳米多孔表面上印刷后保留的蛋白质功能,从而可以为现场护理应用提供可打印且强大的免疫测定检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号