首页> 外文期刊>Nanotechnology >Finite optical spot size and position corrections in thermal spring constant calibration
【24h】

Finite optical spot size and position corrections in thermal spring constant calibration

机译:热弹簧常数校准中的有限光点尺寸和位置校正

获取原文
获取原文并翻译 | 示例
           

摘要

One of the most popular methods for calibrating the spring constant of an atomic force microscope cantilever is the thermal noise method. The usual implementation of this method has been to position the focused optical spot on or near the end of the cantilever, acquire a force curve on a hard surface to characterize the optical lever sensitivity and to then measure the thermal motion of the cantilever. The equipartition theorem then allows the spring constant to be calculated. In this work, we measured the spring constant as a function of the spot along the length of the cantilever. The observed systematic variation in the spring constant as a function of this position ranged from approx = 15 percent for a short 60 mu m cantilever up to approx = 50 percent for a 225 mu m cantilever we examined. In addition, the thermally calibrated spring constants systematically disagreed with spring constants calibrated using the Sader and Cleveland methods: by approx = 50 percent for the short 60 mu m cantilever and by approx = 25 percent for the longest, 225 mu m cantilever. By using a model that accounts for the spot diameter and position on the cantilever, the thermally measured spring constants were brought into better than 10 percent agreement with the other methods.
机译:校准原子力显微镜悬臂弹簧常数的最流行的方法之一是热噪声法。该方法的通常实施方式是将聚焦的光斑放置在悬臂末端上或附近,在硬表面上获取力曲线以表征光杠杆灵敏度,然后测量悬臂的热运动。等分定理然后允许计算弹簧常数。在这项工作中,我们测量了沿悬臂长度方向的弹簧常数随点的变化。观察到的弹簧常数作为该位置的函数的系统变化范围从短的60微米悬臂的大约= 15%到我们检查的225微米悬臂的大约= 50%不等。此外,热校准的弹簧常数与使用Sader和Cleveland方法校准的弹簧常数在系统上不一致:对于60微米的短悬臂梁,大约为50%,对于最长的225微米悬臂梁,大约为25%。通过使用考虑悬臂点直径和位置的模型,与其他方法相比,热测量的弹簧常数要好于10%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号