...
首页> 外文期刊>Rock Mechanics and Rock Engineering >Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-Stress-Damage Model and a Parallel FEM Technique
【24h】

Numerical Simulation of 3D Hydraulic Fracturing Based on an Improved Flow-Stress-Damage Model and a Parallel FEM Technique

机译:基于改进的流-应力-损伤模型和并行有限元技术的3D水力压裂数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The failure mechanism of hydraulic fractures in heterogeneous geological materials is an important topic in mining and petroleum engineering. A three-dimensional (3D) finite element model that considers the coupled effects of seepage, damage, and the stress field is introduced. This model is based on a previously developed two-dimensional (2D) version of the model (RFPA2D-Rock Failure Process Analysis). The RFPA3D-Parallel model is developed using a parallel finite element method with a message-passing interface library. The constitutive law of this model con-siders strength and stiffness degradation, stress-dependent permeability for the pre-peak stage, and deformation-dependent permeability for the post-peak stage. Using this model, 3D modelling of progressive failure and associated fluid flow in rock are conducted and used to investigate the hydro-mechanical response of rock samples at laboratory scale. The responses investigated are the axial stress-axial strain together with permeability evolution and fracture patterns at various stages of loading. Then, the hydraulic fracturing process inside a rock specimen is numerically simulated. Three coupled processes are considered: (1) mechanical deformation of the solid medium induced by the fluid pressure acting on the fracture surfaces and the rock skeleton, (2) fluid flow within the fracture, and (3) propagation of the fracture. The numerically simulated results show that the fractures from a vertical wellborepropagate in the maximum principal stress direction with-out branching, turning, and twisting in the case of a large difference in the magnitude of the far-field stresses. Otherwise, the fracture initiates in a non-preferred direction and plane then turns and twists during propagation to become aligned with the preferred direction and plane. This pattern of fracturing is common when the rock formation contains multiple layers with different material properties. In addition, local heterogeneity of the rock matrix and macro-scale stress fluctuations due to the variability of material properties can cause the branching, turning, and twisting of fractures.
机译:非均质地质材料中水力压裂的破坏机理是采矿和石油工程中的重要课题。引入了考虑渗流,损伤和应力场耦合效应的三维(3D)有限元模型。该模型基于模型的先前开发的二维(2D)版本(RFPA2D-岩石失效过程分析)。 RFPA3D-Parallel模型是使用带有消息传递接口库的并行有限元方法开发的。该模型的本构定律考虑强度和刚度降低,峰前阶段的应力相关渗透率以及峰后阶段的变形相关渗透率。使用该模型,对岩石进行性破坏和相关的流体流动进行了3D建模,并用于研究实验室规模的岩石样品的水力响应。研究的响应是轴向应力-轴向应变以及在不同载荷阶段的渗透率演化和断裂模式。然后,对岩石内部的水力压裂过程进行了数值模拟。考虑了三个耦合过程:(1)作用在裂缝表面和岩石骨架上的流体压力引起的固体介质的机械变形;(2)裂缝内的流体流动;(3)裂缝的传播。数值模拟结果表明,在远场应力大小相差较大的情况下,垂直井眼在最大主应力方向上的裂缝没有分支,转向和扭曲。否则,裂缝沿非优选方向开始,然后平面在传播过程中发生扭曲和扭曲,从而与优选方向和平面对齐。当岩层包含具有不同材料特性的多层时,这种破裂方式很常见。此外,岩石基质的局部非均质性和由于材料特性的变化而引起的宏观应力波动会导致裂缝的分支,转向和扭曲。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号