首页> 外文期刊>RSC Advances >Diffusion induced stress and the distribution of dislocations in a nanostructured thin film electrode during lithiation
【24h】

Diffusion induced stress and the distribution of dislocations in a nanostructured thin film electrode during lithiation

机译:锂化过程中扩散引起的应力和纳米结构薄膜电极中的位错分布

获取原文
获取原文并翻译 | 示例
           

摘要

Li-ion battery electrode materials that undergo huge volume changes require studies on fracturing during lithiation. By analyzing the process of lithiation, a new model has been established, which considers the dislocation mechanisms of nanostructured thin film electrode materials involving diffusion induced stress to improve the battery life of Li-ion batteries undergoing potentiostatic or galvanostatic charging. In the present work, the interactions between diffusion and dislocation induced stress or strain energy are demonstrated under potentiostatic and galvanostatic charging. The stress and strain energy can evolve quite differently under potentiostatic or galvanostatic charging. At the same time, we observed that the magnitude of the stress and strain energy is influenced by dislocations. What's more, the effect of dislocations on the total strain energy or maximum stress is larger under potentiostatic charging than under galvanostatic charging at the beginning of charging. However, the total strain energy or maximum stress under galvanostatic charging is larger than that under potentiostatic charging later in the lithiation process. The influence of the dislocation effects upon the mechanical behaviour is specified, and is more significant in terms of the distribution of the stress and strain energy in the nanostructured thin film electrode. These results also show that it is possible to control the dislocation density with the methods of nanotechnology to improve Li-ion battery life.
机译:体积发生巨大变化的锂离子电池电极材料需要研究锂化过程中的破裂。通过分析锂化过程,建立了一个新模型,该模型考虑了涉及扩散诱导应力的纳米结构薄膜电极材料的位错机理,以提高锂离子电池在恒电位或恒电流充电中的电池寿命。在目前的工作中,扩散和位错引起的应力或应变能之间的相互作用在恒电位和恒电流充电下得到了证明。在恒电位或恒电流充电下,应力和应变能可能会发生很大不同。同时,我们观察到应力和应变能的大小受位错的影响。而且,在恒电位充电时,位错对总应变能或最大应力的影响要比在开始充电时的恒电流充电时大。但是,在锂化过程中,恒电流充电下的总应变能或最大应力大于恒电位充电下的总应变能或最大应力。规定了位错效应对机械行为的影响,并且就应力和应变能在纳米结构薄膜电极中的分布而言更为重要。这些结果还表明,可以通过纳米技术的方法来控制位错密度,以提高锂离子电池的寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号