...
首页> 外文期刊>Russian journal of electrochemistry >Computer simulation of negative electrode operation in Lithium-Ion battery: Galvanostatic discharge, porous electrode model and film model
【24h】

Computer simulation of negative electrode operation in Lithium-Ion battery: Galvanostatic discharge, porous electrode model and film model

机译:锂离子电池负极运行的计算机模拟:恒电流放电,多孔电极模型和薄膜模型

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Computer simulation of the structure and methods of operation (galvanostatic discharge) of the negative electrode of a lithium-ion battery is performed. Two possible models of the active anode layer were compared. 1. The model of porous active layer (mixture of active substance grains with grains of electrolyte). Here, the electrochemical process occurs within a porous active layer. 2. The film model (constant-thickness layer) of pure active substance (intercalating agent) grains without admixture of grains of electrolyte. In this case, the electrochemical reaction occurs only on the planar active electrode layer/interelectrode space interface. In both cases, the optimum working parameters of anode active layers were calculated: porous active layer thickness (in the film model, this was the calculation parameter), duration of full anode discharge, specific electric capacitance and finite difference between the intercalating agent/electrolyte potentials at the active anode layer/interelectrode space interface. It is found that each of these two models has its advantages and faults. Specific electric capacitance C cannot exceed the values of the order of magnitude of 10 C/cm~2 when a porous active layer is used. Whereas in the film model, much higher values of C may be obtained: tens and even hundreds of C/cm~2. On the other hand, in the case of anode discharge, the reasonable discharge current density value, its maximum value, at which practically full recovery of lithium atoms from active intercalating agent grains is still possible, proves to be by orders of magnitude higher in the case of an anode with a porous active layer, as compared with a film-type anode. Thus, in the case of development of electrode active layers of lithium-ion batteries, there is a possibility of choosing from two variants. There is the variant of an active film-type layer providing high capacitance values, but low discharge current density. Or there is another variant: a porous active layer with limited capacitance but then much higher values of discharge current density.
机译:对锂离子电池负极的结构和操作方法(恒电流放电)进行计算机模拟。比较了活性阳极层的两种可能的模型。 1.多孔活性层模型(活性物质颗粒与电解质颗粒的混合物)。在此,电化学过程发生在多孔活性层内。 2.纯活性物质(嵌入剂)颗粒的薄膜模型(恒定厚度层),没有电解质颗粒的混合。在这种情况下,仅在平面活性电极层/电极间空间界面上发生电化学反应。在这两种情况下,都计算出阳极活性层的最佳工作参数:多孔活性层的厚度(在薄膜模型中,这是计算参数),阳极完全放电的持续时间,比电容和嵌入剂/电解质之间的有限差异活性阳极层/电极间空间界面处的电位。发现这两个模型中的每一个都有其优点和缺点。当使用多孔活性层时,比电容C不能超过10C / cm〜2的数量级。而在胶片模型中,可以获得更高的C值:数十甚至数百C / cm〜2。另一方面,在阳极放电的情况下,合理的放电电流密度值(最大值)实际上仍可以从活性插层剂晶粒中完全回收,在该最大值处仍可以实现。与膜型阳极相比,具有多孔活性层的阳极的情况。因此,在开发锂离子电池的电极活性层的情况下,有可能从两个变体中进行选择。有源膜型层具有提供高电容值但低放电电流密度的变体。或者还有另一种变体:多孔有源层,其电容有限,但放电电流密度要高得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号