...
首页> 外文期刊>Biomaterials >Role of trapped air in the formation of cell-and-protein micropatterns on superhydrophobic/superhydrophilic microtemplated surfaces
【24h】

Role of trapped air in the formation of cell-and-protein micropatterns on superhydrophobic/superhydrophilic microtemplated surfaces

机译:滞留的空气在超疏水/超亲水微模板表面上形成细胞和蛋白质微图案的作用

获取原文
获取原文并翻译 | 示例
           

摘要

Air trapped within the interstices of TiO 2 nanotube surfaces bearing superhydrophobic/superhydrophilic microtemplated domains controls formation of protein micropatterns but not cell micropatterns. Protein binding from either bovine-serum albumin (BSA) or fetal-bovine serum (FBS) solutions to superhydrophobic domains is blocked in the presence of trapped air, leading to clear protein binding contrast between superhydrophilic and superhydrophobic domains. Protein binds to superhydrophobic domains when air is displaced by sonication, leading to more protein binding to superhydrophobic domains than to superhydrophilic, with concomitantly blurred protein binding contrast. The overall contrast obtained in formation of cell (hFOB1.19, MG63, and HeLa) micropatterns depends on the cell type and protein composition of the fluid phase. All cell types preferentially attach to superhydrophilic domains from each fluid phase tested (FBS, BSA, and basal media containing no protein). All cell types do not attach to superhydrophobic domains from FBS solutions, with-or-without trapped air, creating a visually-obvious cell attachment pattern. However, cells attached to superhydrophobic domains from basal media suspensions, with-or-without trapped air, creating a blurred cell attachment pattern. Cell attachment from BSA-containing solutions gave mixed results depending on cell type. Thus, trapped air does not necessarily block cell attachment as has been suggested in the literature. Rather, cell attachment is controlled by interfacial tensions between cells, surfaces, and fluid phases in a manner that can be understood in terms of the Dupré work-of-adhesion formulation. Cell attachment patterns developed within the initial attachment phase persist for up to two days of continuous culture but overgrow thereafter, with-or-without trapped air, showing that trapped air does not block cell overgrowth over time of continuous culture.
机译:截留在带有超疏水/超亲水微模板化域的TiO 2纳米管表面空隙中的空气控制着蛋白质微图案的形成,而不控制细胞微图案的形成。在捕获空气的存在下,蛋白从牛血清白蛋白(BSA)或胎牛血清(FBS)溶液与超疏水域的结合被阻断,从而导致超亲水域与超疏水域之间的蛋白结合对比明显。当空气通过超声处理置换掉时,蛋白质与超疏水域结合,导致蛋白质与超疏水域的结合比与超亲水域的结合更多,同时蛋白质结合反差模糊。在形成细胞(hFOB1.19,MG63和HeLa)微模式时获得的总体对比度取决于细胞类型和流体相的蛋白质组成。所有细胞类型都优先附着于每个测试流体相的超亲水域(FBS,BSA和不含蛋白质的基础培养基)。所有细胞类型都不会在FBS溶液中附着或附着在超疏水域上,无论有无空气残留,都会产生视觉上明显的细胞附着模式。但是,有或没有捕获空气的情况下,细胞会从基础培养基悬浮液附着到超疏水域,从而形成模糊的细胞附着模式。来自含BSA的溶液的细胞附着会根据细胞类型给出混合结果。因此,如文献中所建议的,截留的空气不一定阻止细胞附着。而是,细胞附着是通过细胞,表面和流体相之间的界面张力来控制的,这种方式可以通过Dupré粘合功配方来理解。在初始附着阶段形成的细胞附着模式持续持续两天,但此后过度生长,有或没有滞留的空气,表明滞留的空气不会阻止连续培养时间的细胞过度生长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号