...
首页> 外文期刊>Smart Materials & Structures >An electromechanical model for sensing and actuation of ionic polymer metal composites
【24h】

An electromechanical model for sensing and actuation of ionic polymer metal composites

机译:用于感测和驱动离子聚合物金属复合材料的机电模型

获取原文
获取原文并翻译 | 示例
           

摘要

Ionic polymer metal composites (IPMCs) are active materials that exhibit a bidirectional electromechanical coupling. An IPMC is an electrolytic polymer membrane that is plated by two metallic electrodes. A voltage difference across the electrodes generates structural deformations; and, conversely, a mechanical deformation yields a voltage difference across the electrodes. In this paper, we develop a physics-based model for the sensing and actuation of IPMCs undergoing small deformations. The model describes a variety of phenomena taking place in an IPMC, including counterions, solvent, and polymer motions; electric dipole generation; osmotic effects; boundary layer formation; polymer swelling; and local charge imbalances. We specialize the model to the analysis of linear static deformations of a thin and flat IPMC, for which we derive a plate-like model. The reduced-order linear plate-like model is derived by using the principle of virtual work and a parallel-plate approximation for the electrostatic field inside the IPMC. The proposed plate-like model is equivalent to traditional plate models for moderately thin piezoelectric bimorph plates. The constitutive parameters of the plate-like model are expressed in terms of fundamental IPMC physical quantities, such as polymer hydration level, IPMC dielectric constant, polymer and electrode dimensions and elastic properties, and solute concentration. We validate the reduced-order model by comparing its predictions with available experimental data on mechanical stiffness, electric capacitance, and sensing and actuation capacity of water-hydrated Nafion in Na+ form. The model predictions are in close agreement with experimental findings. The model provides new insights into the design and optimization of IPMCs and into the role of the IPMC electric capacitance on electromechanical performance. More specifically, we show that the IPMC capacitance is largely independent of the IPMC thickness and highly correlated to the thickness of the boundary layers formed by the counterion species in the vicinity of the electrodes. Further, we analytically show that the capacitance strongly influences the sensing and actuation effectiveness of IPMCs.
机译:离子聚合物金属复合材料(IPMC)是具有双向机电耦合的活性材料。 IPMC是一种电解聚合物膜,由两个金属电极镀覆。电极之间的电压差会产生结构变形;相反,机械变形会在电极之间产生电压差。在本文中,我们开发了一种基于物理的模型,用于感测和激活经受小变形的IPMC。该模型描述了IPMC中发生的各种现象,包括抗衡离子,溶剂和聚合物运动。电偶极子产生渗透作用边界层形成;聚合物溶胀;和当地的收费失衡。我们将模型专门用于分析薄而扁平的IPMC的线性静态变形,为此我们得出了板状模型。降阶线性板状模型是通过使用虚拟功的原理和对IPMC内部静电场的平行板近似而得出的。所提出的板状模型等效于用于中等厚度压电双压电晶片的传统板模型。板状模型的本构参数以IPMC的基本物理量表示,例如聚合物的水合度,IPMC介电常数,聚合物和电极的尺寸以及弹性和溶质浓度。我们通过将其预测与可用的实验数据进行比较,从而验证了降阶模型,该实验数据涉及机械强度,电容量以及Na +形式的水合Nafion的传感和驱动能力。模型预测与实验结果非常吻合。该模型为IPMC的设计和优化以及IPMC电容对机电性能的作用提供了新的见解。更具体地说,我们显示出IPMC电容在很大程度上与IPMC厚度无关,并且与电极附近由抗衡离子物种形成的边界层的厚度高度相关。此外,我们通过分析表明,电容极大地影响了IPMC的传感和驱动效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号