...
首页> 外文期刊>Spectrochimica acta, Part A. Molecular and biomolecular spectroscopy >Mid- and far-infrared spectroscopic studies of the influence of temperature, ultraviolet photolysis and ion irradiation on cosmic-type ices
【24h】

Mid- and far-infrared spectroscopic studies of the influence of temperature, ultraviolet photolysis and ion irradiation on cosmic-type ices

机译:中远红外光谱研究温度,紫外线光解和离子辐照对宇宙型冰的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Infrared (IR) studies of laboratory ices can provide information on the evolution of cosmic-type ices as a function of different simulated space environments involving thermal, ultraviolet (UV), or ion processing. Laboratory radiation experiments can lead to the formation of complex organic molecules. However, because of our lack of knowledge about UV photon and ion fluxes, and exposure lifetimes, it is not certain how well our simulations represent space conditions. Appropriate laboratory experiments are also limited by the absence of knowledge about the composition, density, and temperature of ices in different regions of space. Our current understanding of expected doses due to W photons and cosmic rays is summarized here, along with an inventory of condensed-phase molecules identified on outer solar system surfaces, comets and interstellar grains. Far-IR spectra of thermally cycled H2O are discussed since these results reflect the dramatic difference between the amorphous and crystalline phases of H2O ice, the most dominant condensed-phase molecule in cosmic ices. A comparison of mid-IR spectra of products in proton-irradiated and UV-photolyzed ices shows that few differences are observed for these two forms of processing for the simple binary mixtures studied to date. IR identification of radiation products and experiments to determine production rates of new molecules in ices during processing are discussed. A new technique for measuring intrinsic IR band strengths of several unstable molecules is presented. An example of our laboratory results applied to Europa observations is included. (C) 2001 Elsevier Science B.V. All rights reserved. [References: 55]
机译:实验室冰块的红外(IR)研究可以提供有关宇宙型冰块演化的信息,该变化取决于涉及热,紫外线(UV)或离子处理的不同模拟空间环境。实验室辐射实验会导致形成复杂的有机分子。但是,由于我们对紫外线光子和离子通量以及曝光寿命缺乏了解,因此我们的模拟不能很好地表示空间条件。由于缺乏有关空间不同区域中冰的成分,密度和温度的知识,相应的实验室实验也受到限制。本文总结了我们目前对W光子和宇宙射线引起的预期剂量的理解,以及在太阳系外表面,彗星和星际谷物上识别出的凝聚相分子的清单。讨论了热循环H2O的远红外光谱,因为这些结果反映了H2O冰的非晶相和结晶相之间的巨大差异,H2O冰是宇宙冰中最主要的冷凝相分子。在质子辐照和紫外线光解的冰中,产品的中红外光谱比较表明,迄今为止研究的简单二元混合物在这两种加工形式中观察到的差异很小。讨论了辐射产物的红外识别和确定冰中新分子在生产过程中的生产率的实验。提出了一种测量几种不稳定分子固有红外波段强度的新技术。包括我们应用于欧罗巴观测的实验室结果的示例。 (C)2001 Elsevier Science B.V.保留所有权利。 [参考:55]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号