...
首页> 外文期刊>Physica Scripta: An International Journal for Experimental and Theoretical Physics >Magnetically orchestrated formation of diamond at lower temperatures and pressures
【24h】

Magnetically orchestrated formation of diamond at lower temperatures and pressures

机译:在较低的温度和压力下以磁性方式组织金刚石

获取原文
获取原文并翻译 | 示例
           

摘要

Mans curiosity and fascination with diamonds date back to ancient times. The knowledge of the many properties of diamond is recorded during Biblical times. Antoine Lavoisier determined the composition of diamond by burning in 02 to form CO2. With the then existing awareness of graphite as carbon, the race began to convert graphite to diamond. The selective chemical synthesis of diamond has been pursued by Cagniard, Hannay, Moisson and Parson. On the basis of the thermodynamically predicted equilibrium line of diamond and graphite, P. W. Bridgman attempted extraordinary conditions of high temperature (>2200C) and pressure (> 100,000 arm) for the allotropic conversion of graphite to diamond. H. T. Hall was the first to successfully form bulk diamond by realizing the kinetic restrictions to Bridgmans (thermodynamic) high pressure high temperature direct allotropic conversion. Moreover, Hall identified catalysts for the faster kinetics of diamond formation. H. M. Strong determined the import of the liquid catalyst during Hall's catalytic synthesis. W. G. Eversole discovered the slow metastable low pressure diamond formation by pyrolytic chemical vapor deposition with the molecular hydrogen etching of the rapidly forming stable graphitic carbon. J. C. Angus determined the import of atomic hydrogen for faster etching for faster diamond growth at low pressure. S. Matsumoto has developed plasma and hot filament technology for faster hydrogen and carbon radical generations at low pressure for faster diamond formation. However the metastable low pressure chemical vapor depositions by plasma and hot filament are prone to polycrystalline films. From Bridgman to Hall to Eversole, Angus and Matsumoto, much knowledge has developed of the importance of pressure, temperature, transition metal catalyst, liquid state of metal (metal radicals atoms) and the carbon radical intermediates for diamond synthesis. Here we advance this understanding of diamond formation by demonstrating the external magnetic organization of carbon, metal and hydrogen radicals for lower temperature and pressure synthesis. Here we show that strong static external magnetic field (> 15 T) enhances the formation of single crystal diamond at lower pressure and even atmospheric pressure with implications for much better, faster high quality diamond formation by magnetization of current high pressure and temperature technology.
机译:人类的好奇心和对钻石的迷恋可以追溯到远古时代。在圣经时期记录了钻石许多特性的知识。 Antoine Lavoisier通过在02中燃烧形成CO2来确定钻石的成分。随着当时对石墨作为碳的认识,种族开始将石墨转化为金刚石。卡格纳德,汉娜,莫伊森和帕森一直致力于钻石的选择性化学合成。 P. W. Bridgman根据热力学预测的金刚石和石墨的平衡线,尝试了高温(> 2200°C)和压力(> 100,000臂)的特殊条件,以实现石墨向金刚石的同素异形转化。 H. T. Hall是第一个通过实现Bridgmans(热力学)高压高温直接同素异形体动力学限制而成功形成大块钻石的公司。此外,霍尔还发现了促进钻石形成更快动力学的催化剂。 H. M. Strong确定了霍尔催化合成过程中液体催化剂的进口情况。 W. G. Eversole通过热解化学气相沉积和快速形成的稳定石墨碳的分子氢蚀刻发现了缓慢的亚稳态低压金刚石形成。安格斯(J. C. Angus)确定了氢原子的导入量,以便更快地进行蚀刻,从而在低压下更快地生长金刚石。 S. Matsumoto开发了等离子和热丝技术,可在低压下更快地产生氢和碳自由基,从而更快地形成金刚石。然而,通过等离子体和热丝产生的亚稳态低压化学气相沉积易于形成多晶膜。从Bridgman到Hall再到Eversole,Angus和Matsumoto,对于压力,温度,过渡金属催化剂,金属的液态(金属自由基原子)和碳自由基中间体在金刚石合成中的重要性,人们已经掌握了很多知识。在这里,我们通过演示用于较低温度和压力合成的碳,金属和氢自由基的外部磁性组织,来增进对金刚石形成的理解。在这里,我们显示出强大的静态外部磁场(> 15 T)可以在低压甚至大气压下增强单晶金刚石的形成,这意味着通过当前高压和高温技术的磁化,可以更好,更快地形成高质量的金刚石。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号