...
首页> 外文期刊>Physiological Reviews >GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations.
【24h】

GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations.

机译:GABA:激发未成熟神经元并产生原始振荡的先驱。

获取原文
           

摘要

Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
机译:发展中的网络遵循共同的规则,从沉默的细胞转变为通过数千个突触运行的协同网络。这项审查处理这些规则中的某些规则,尤其是那些与神经递质γ-氨基丁酸(GABA)的关键作用有关的规则,其主要通过可透过氯化物的GABA(A)受体通道起作用。在研究的所有发育中的动物物种和脑结构中,神经元在早期具有较高的细胞内氯浓度,从而导致氯化物外流和GABA在未成熟神经元中的兴奋作用。这会触发钠尖峰,激活电压门控的钙通道,并通过去除电压依赖性镁块与NMDA通道协同作用。 GABA信号在谷氨酸能传递之前也已建立,表明GABA是早期发育过程中的主要兴奋性递质。实际上,即使在突触形成之前,GABA信号传导也可以调节细胞周期和迁移。这些规则的结果是,发展中的网络主要通过GABA的兴奋作用及其与谷氨酸信号的协同相互作用,产生网络活动的原始模式,特别是巨大的去极化潜力(GDPs)。这些早期类型的网络活动可能需要神经元一起发射,从而“连接”在一起,从而形成皮层网络内的功能单元。此外,去极化GABA对突触可塑性和病理损伤(尤其是未成熟大脑的癫痫发作)有很大影响。结论是,未成熟细胞中兴奋性GABA的进化保留作用为神经元网络中突触的形成和活性提供了重要的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号