首页> 外文OA文献 >Effect of fluid dynamics and device mechanism on biofluid behaviour in microchannel systems: modelling biofluids in a microchannel biochip separator
【2h】

Effect of fluid dynamics and device mechanism on biofluid behaviour in microchannel systems: modelling biofluids in a microchannel biochip separator

机译:流体动力学和装置机理对微通道系统中生物流体行为的影响:在微通道生物芯片分离器中对生物流体建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biofluid behaviour in microchannel systems is investigated in this paper through the modelling of a microfluidic biochip developed for the separation of blood plasma. Based on particular assumptions, the effects of some mechanical features of the microchannels on behaviour of the biofluid are explored. These include microchannel, constriction, bending channel, bifurcation as well as channel length ratio between the main and side channels. The key characteristics and effects of the microfluidic dynamics are discussed in terms of separation efficiency of the red blood cells with respect to the rest of the medium. The effects include the Fahraeus and Fahraeus-Lindqvist effects, the Zweifach-Fung bifurcation law, the cell-free layer phenomenon. The characteristics of the microfluid dynamics include the properties of the laminar flow as well as particle lateral or spinning trajectories. In this paper the fluid is modelled as a single-phase flow assuming either Newtonianudor Non-Newtonian behaviours to investigate the effect of theudviscosity on flow and separation efficiency. It is found that, for a flow rate controlled Newtonian flow system, viscosity and outlet pressure have little effect on velocity distribution. When the fluid is assumed to be Non-Newtonian more fluid is separated than observed in the Newtonian case, leading to reduction of the flow rate ratio between the main and side channels as well as the system pressure as a whole.
机译:本文通过对用于分离血浆的微流体生物芯片进行建模,研究了微通道系统中的生物流体行为。基于特定的假设,探讨了微通道的某些机械特征对生物流体行为的影响。这些包括微通道,收缩通道,弯曲通道,分叉以及主通道和侧通道之间的通道长度比。关于红细胞相对于其余介质的分离效率,讨论了微流体动力学的关键特征和影响。这些效应包括Fahraeus和Fahraeus-Lindqvist效应,Zweifach-Fung分叉定律,无细胞层现象。微流体动力学的特征包括层流的性质以及颗粒的横向或旋转轨迹。本文将流体建模为单相流动,并假设牛顿/非牛顿行为,以研究粘度对流动和分离效率的影响。发现对于流速受控的牛顿流系统,粘度和出口压力对速度分布影响很小。当假定流体为非牛顿流体时,与在牛顿情况下观察到的流体相比,分离出的流体更多,从而导致主通道和侧通道之间的流量比降低以及整个系统压力降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号