首页> 中国专利> 具有汞传感响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜的制备方法

具有汞传感响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜的制备方法

摘要

本发明是一种具有汞气敏响应的硫掺杂聚苯胺和二氧化钛纳米线薄膜的制备方法,其特点是,它包括制备二氧化钛纳米线、聚苯胺在二氧化钛纳米线上的原位聚合和水热硫化步骤。既具有聚苯胺良好的导电性,又具有二氧化钛半导体传感效应,科学合理,应用价值高等优点。

著录项

  • 公开/公告号CN104177637A

    专利类型发明专利

  • 公开/公告日2014-12-03

    原文格式PDF

  • 申请/专利权人 东北电力大学;

    申请/专利号CN201410407341.0

  • 发明设计人 孙墨杰;刘晓萌;王冬;周凯;

    申请日2014-08-19

  • 分类号C08J5/18;C08L79/02;C08K7/08;C08K5/405;C08G73/02;

  • 代理机构吉林市达利专利事务所;

  • 代理人陈传林

  • 地址 132012 吉林省吉林市船营区长春路169号

  • 入库时间 2023-12-17 02:09:03

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2016-10-05

    授权

    授权

  • 2014-12-31

    实质审查的生效 IPC(主分类):C08J5/18 申请日:20140819

    实质审查的生效

  • 2014-12-03

    公开

    公开

说明书

技术领域

本发明涉及高分子复合膜材料技术领域,是一种具有汞气敏响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜的制备方法。

背景技术

在现有技术中,聚苯胺(PANI)在导电高分子中是导电率较高的一种,同时聚苯胺具有易于合成、原料价廉、耐高温及电导率的环境可调、可氧化还原等特性,一直是导电高分子家族中研究的热点。目前合成方法主要有:水溶液化学氧化聚合法、乳液聚合法、微乳液聚合法和电化学聚合法。然而单独的聚苯胺没有对汞蒸气的传感响应。二氧化钛(TiO2)纳米线具有一些其它金属氧化物难以比拟的物理化学性质,在光催化降解有机污染物、光催化制氢、气敏传感材料、太阳能电池光阳极材料等方面有着广泛的应用价值。尤其近年来在气敏方向的研究具有巨大的潜力。现今研究的热点多是对无机或者有机气体的传感,例如对氨气(NH3)、二氧化碳(CO2)等,对金属气体汞(Hg)蒸气的传感研究在国内非常鲜见。而国外对金属汞蒸气的传感研究多集中基于碳材料的贵金属掺杂的气敏材料薄膜。迄今,尚未见非金属掺杂的汞气敏薄膜的研究报道和实际应用。

发明内容

本申请人集创新团队之力,通过深入的理论研究和大量的科学试验,制备了一种具有汞气敏响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜,这种复合纳米线气敏薄膜,在室温下对金属汞(Hg)蒸气具有较好的气敏响应,在室温下对在5.57mg/m3至126.18mg/m3浓度范围内的气态单质汞有较好的敏感响应,响应及恢复时间都非常短,敏感度((Rg - R0)/R0,R0表示在空气中的电阻值,Rg表示在汞蒸气和空气背景下的电阻值)在126.18mg/m3能达到-0.78,相比于同等浓度下的金属银掺杂材料,如氯化银和钛酸(AgCl/H2Ti2O5)的敏感度为-0.33,非金属硫掺杂的气敏薄膜材料敏感度的绝对值是其2.36倍;同时研究了对其他干扰气体(NO2、SO2、NH3)的敏感响应,发现该材料对汞单质有较好的选择性。硫掺杂的聚苯胺与二氧化钛纳米线的纳米复合材料具有分子级的协同效应和结构上的互补效应,具有广泛的应用前景。

本发明的目的在于,提供一种既具有聚苯胺良好的导电性,又具有二氧化钛半导体传感效应,科学合理,应用价值高的具有汞气敏响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜的制备方法。

本发明的目的是由以下技术方案来实现的:一种具有汞气敏响应的硫掺杂聚苯胺和二氧化钛纳米线薄膜的制备方法,其特征是,它包括以下步骤:

1)制备二氧化钛纳米线

将苯胺、过硫酸铵、盐酸、钛箔、氢氧化钠和硫脲,按苯胺与过硫酸铵的摩尔比3.5:1,盐酸浓度为1mol/L,用于调节反应过程的pH值;钛箔的纯度为99.6%,尺寸为长2cm*宽1cm*厚度0.1cm,氢氧化钠的浓度为1mol/L,硫脲的浓度为0.13mol/L或0.195mol/L制成二氧化钛纳米线;

2)聚苯胺在二氧化钛纳米线上的原位聚合

首先将钛箔打磨抛光,置于由氢氟酸、硝酸和水,按体积比2:5:5配制的刻蚀液中,经过20s的刻蚀,然后,在纯去离子水中超声清洗三次,再在纯丙酮液中超声波清洗三次,处理后得到的钛片立于50mL反应釜内衬中,加入20mL, 1mol/L氢氧化钠,再将所述的反应釜置于温度180℃至220℃烘箱中,反应24h,在钛片上生成钛酸H2Ti2O5纳米线,将生成钛酸H2Ti2O5纳米线的钛片在温度450℃马弗炉中煅烧2h,生成二氧化钛TiO2纳米线的钛片,将3.27mL苯胺单体溶于40mL去离子水后超声分散均匀形成有机相与水相混合的浊液,用1mol/L盐酸调节pH=5,将生长纳米线的钛片缓慢浸入悬置于烧杯中,距底部0.8-1.2cm,温度50℃水浴搅拌2h,加入2.48g过硫酸铵,调节pH为1-2,常温搅拌6h,原位聚合反应结束后,经过自然干燥,得到聚苯胺和二氧化钛纳米线复合负载钛箔;

3)水热硫化

将20mL,0.13mol/L或30mL, 0.195mol/L的硫脲溶液倒入100mL反应釜内衬中,将步骤2)得到的聚苯胺和二氧化钛复合纳米线的复合钛片立于反应釜内衬中,将反应釜置于温度160℃-220℃烘箱中,水热反应48h,反应结束后,再经过温度60℃干燥6-8h,得到具有汞气敏响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜。

本发明与现有技术相比所具有突出的实质性特点和显著进步体现在:

(1)制备成本低,过程简单,操作方便;

(2)制备的聚苯胺和二氧化钛纳米线为直径约50nm的线状结构,且是在钛箔上直接生长形成纳米线薄膜;

(3)制备的聚苯胺和二氧化钛纳米线对一定程度的汞蒸气具有气敏响应;

(4)制备的纳米线薄膜实现了将单质汞浓度信号转化为电阻信号变化。

(5)既具有聚苯胺良好的导电性,又具有二氧化钛半导体传感效应,科学合理,应用价值高。

附图说明

图1为本发明的二氧化钛纳米线的SEM图;

图2为本发明的聚苯胺和二氧化钛纳米线复合钛片的EDAX能谱图;

图3为本发明中聚苯胺在二氧化钛纳米线上的原位聚合反应装置示意图。

具体实施方式

下面通过附图和实施例对本发明作进一步描述。

参照图1,从图中可以看出TiO2纳米线的形貌较好,直径约为50nm,并且呈一种无序排列状态,纳米线之间相互接触连接。这种状态有利于电子在横向和纵向的传输。负载上一层聚苯胺之后,TiO2纳米线结构没有被改变,纳米线之间的连接更加紧密,更加有利于电子横纵向的传输。

参照图2,从图中可以看出,硫掺杂PANI/TiO2中只含有C、N、O、S和Ti元素,没有其它杂质峰的出现。C、N、O、S和Ti的重量百分比(Wt%)为34.31%、6.76%、16.69%、12.66%和29.58%,原子数百分比(At%)为52.95%、8.95%、19.33%、7.32%和11.45%。PANI本身含有C、N和O元素,经过硫化之后,成功掺入S元素。   

参照图3,本发明中聚苯胺在钛箔原位聚合反应装置的结构是,由一个铁架台1、烧杯2、电磁转子3和电磁恒温加热台4组成。铁架台1用于悬置钛箔,恒温加热台4用于恒温加热,烧杯2用于装载反应体系,电磁转子3用于匀速搅拌。

 本发明的一种具有汞气敏响应的硫掺杂聚苯胺和二氧化钛纳米线薄膜的制备方法,包括以下步骤,

 1)制备二氧化钛纳米线

将苯胺、过硫酸铵、盐酸、钛箔、氢氧化钠和硫脲,按苯胺与过硫酸铵的摩尔比3.5:1,盐酸浓度为1mol/L,用于调节反应过程的pH值;钛箔的纯度为99.6%,尺寸为长2cm*宽1cm*厚度0.1cm,氢氧化钠的浓度为1mol/L,硫脲的浓度为0.13mol/L或0.195mol/L制成二氧化钛纳米线;

2)聚苯胺在二氧化钛纳米线上的原位聚合

首先将钛箔打磨抛光,置于由氢氟酸、硝酸和水,按体积比2:5:5配制的刻蚀液中,经过20s的刻蚀,然后,在纯去离子水中超声清洗三次,再在纯丙酮液中超声波清洗三次,处理后得到的钛片立于50mL反应釜内衬中,加入20mL, 1mol/L氢氧化钠,再将所述的反应釜置于温度180℃至220℃烘箱中,反应24h,在钛片上生成钛酸H2Ti2O5纳米线,将生成钛酸H2Ti2O5纳米线的钛片在温度450℃马弗炉中煅烧2h,生成二氧化钛TiO2纳米线的钛片,将3.27mL苯胺单体溶于40mL去离子水后超声分散均匀形成有机相与水相混合的浊液,用1mol/L盐酸调节pH=5,将生长纳米线的钛片缓慢浸入悬置于烧杯中,距底部0.8-1.2cm,温度50℃水浴搅拌2h,加入2.48g过硫酸铵,调节pH为1-2,常温搅拌6h,原位聚合反应结束后,经过自然干燥,得到聚苯胺和二氧化钛纳米线复合负载钛箔;

3)水热硫化

将20mL,0.13mol/L或30mL, 0.195mol/L的硫脲溶液倒入100mL反应釜内衬中,将步骤2)得到的聚苯胺和二氧化钛复合纳米线的复合钛片立于反应釜内衬中,将反应釜置于温度160℃-220℃烘箱中,水热反应48h,反应结束后,再经过温度60℃干燥6-8h,得到具有汞气敏响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜。

实施例1

首先将钛箔打磨抛光,然后置于刻蚀液(氢氟酸,硝酸,水体积比为2:5:5)刻蚀20s,然后在纯去离子水超声清洗三次,在纯丙酮液中超声清洗三次。大量水冲洗之后将钛片立于50mL反应釜内衬中,加入20mL 1mol/L氢氧化钠。然后将反应釜置于180℃烘箱中反应24h,在钛片上生成钛酸(H2Ti2O5)纳米线。将该钛箔在450℃马弗炉中煅烧2h,生成二氧化钛(TiO2)纳米线的钛片。将3.27mL苯胺单体溶于40mL去离子水后超声分散均匀形成有机相与水相混合的浊液,用1mol/L盐酸调节pH=5,将生长纳米线的钛片缓慢浸入悬置于烧杯中,距底部0.8-1.2cm,50℃水浴搅拌2h。然后加入2.48g过硫酸铵,调节pH等于2,常温搅拌6h。原位聚合反应结束后,经过自然干燥,得到聚苯胺和二氧化钛纳米线复合负载钛箔。将20mL 0.195mol/L的硫脲溶液倒入100mL反应釜内衬。将上述钛箔立于反应釜内衬中。将反应釜置于160℃烘箱中水热反应48h。反应结束后, 再经过温度60℃干燥6h。得到具有汞气敏响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜。

实施例2

首先将钛箔打磨抛光,然后置于刻蚀液(氢氟酸,硝酸,水体积比为2:5:5)刻蚀20s,然后在纯去离子水超声清洗三次,在纯丙酮液中超声清洗三次。大量水冲洗之后将钛片立于50mL反应釜内衬中,加入20mL 1mol/L氢氧化钠。然后将反应釜置于200℃烘箱中反应24h,在钛片上生成钛酸(H2Ti2O5)纳米线。将该钛箔在450℃马弗炉中煅烧2h,生成二氧化钛(TiO2)纳米线的钛片。将3.27mL苯胺单体溶于40mL去离子水后超声分散均匀形成有机相与水相混合的浊液,用1mol/L盐酸调节pH=5,将生长纳米线的钛片缓慢浸入悬置于烧杯中,距底部0.8-1.2cm,50℃水浴搅拌2h。然后加入2.48g过硫酸铵,调节pH等于2,常温搅拌6h。原位聚合反应结束后,将钛箔取出自然干燥,得到聚苯胺和二氧化钛纳米线复合负载钛箔。将20mL 0.195mol/L的硫脲溶液倒入100mL反应釜内衬。将上述钛箔立于反应釜内衬中。将反应釜置于180℃烘箱中水热反应48h。反应结束后, 再经过温度60℃干燥6h。得到具有汞气敏响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜。

实施例3

首先将钛箔打磨抛光,然后置于刻蚀液(氢氟酸,硝酸,水体积比为2:5:5)刻蚀20s,然后在纯去离子水超声清洗三次,在纯丙酮液中超声清洗三次。大量水冲洗之后将钛片立于50mL反应釜内衬中,加入20mL 1mol/L氢氧化钠。然后将反应釜置于220℃烘箱中反应24h,在钛片上生成钛酸(H2Ti2O5)纳米线。将该钛箔在450℃马弗炉中煅烧2h,生成二氧化钛(TiO2)纳米线的钛片。将3.27mL苯胺单体溶于40mL去离子水后超声分散均匀形成有机相与水相混合的浊液,用1mol/L盐酸调节pH=5,将生长纳米线的钛片缓慢浸入悬置于烧杯中,距底部0.8-1.2cm,50℃水浴搅拌2h。然后加入2.48g过硫酸铵,调节pH等于2,常温搅拌6h。原位聚合反应结束后,将钛箔取出自然干燥,得到聚苯胺和二氧化钛纳米线复合负载钛箔。将30mL 0.13mol/L的硫脲溶液倒入100mL反应釜内衬。将上述钛箔立于反应釜内衬中。将反应釜置于200℃烘箱中水热反应48h。反应结束后, 再经过温度60℃干燥6h。得到具有汞气敏响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜。

实施例4

首先将钛箔打磨抛光,然后置于刻蚀液(氢氟酸,硝酸,水体积比为2:5:5)刻蚀20s,然后在纯去离子水超声清洗三次,在纯丙酮液中超声清洗三次。大量水冲洗之后将钛片立于50mL反应釜内衬中,加入20mL 1mol/L氢氧化钠。然后将反应釜置于200℃烘箱中反应24h,在钛片上生成钛酸(H2Ti2O5)纳米线。将该钛箔在450℃马弗炉中煅烧2h,生成二氧化钛(TiO2)纳米线的钛片。将3.27mL苯胺单体溶于40mL去离子水后超声分散均匀形成有机相与水相混合的浊液,用1mol/L盐酸调节pH=5,将生长纳米线的钛片缓慢浸入悬置于烧杯中,距底部0.8-1.2cm,50℃水浴搅拌2h。然后加入2.48g过硫酸铵,调节pH等于2,常温搅拌6h。原位聚合反应结束后,将钛箔取出自然干燥,得到聚苯胺和二氧化钛纳米线复合负载钛箔。将30mL 0.13mol/L的硫脲溶液倒入100mL反应釜内衬。将上述钛箔立于反应釜内衬中。将反应釜置于220℃烘箱中水热反应48h。反应结束后, 再经过温度60℃干燥6h。得到具有汞气敏响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜。

实施例5

首先将钛箔打磨抛光,然后置于刻蚀液(氢氟酸,硝酸,水体积比为2:5:5)刻蚀20s,然后在纯去离子水超声清洗三次,在纯丙酮液中超声清洗三次。大量水冲洗之后将钛片立于50mL反应釜内衬中,加入20mL 1mol/L氢氧化钠。然后将反应釜置于200℃烘箱中反应24h,在钛片上生成钛酸(H2Ti2O5)纳米线。将该钛箔在450℃马弗炉中煅烧2h,生成二氧化钛(TiO2)纳米线的钛片。将3.27mL苯胺单体溶于40mL去离子水后超声分散均匀形成有机相与水相混合的浊液,用1mol/L盐酸调节pH=5,将生长纳米线的钛片缓慢浸入悬置于烧杯中,距底部0.8-1.2cm,50℃水浴搅拌2h。然后加入2.48g过硫酸铵,调节pH等于2,常温搅拌6h。原位聚合反应结束后,将钛箔取出自然干燥,得到聚苯胺和二氧化钛纳米线复合负载钛箔。将20mL 0.13mol/L的硫脲溶液倒入100mL反应釜内衬。将上述钛箔立于反应釜内衬中。将反应釜置于160℃烘箱中水热反应48h。反应结束后, 再经过温度60℃干燥8h。得到具有汞气敏响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜。

实施例6

首先将钛箔打磨抛光,然后置于刻蚀液(氢氟酸,硝酸,水体积比为2:5:5)刻蚀20s,然后在纯去离子水超声清洗三次,在纯丙酮液中超声清洗三次。大量水冲洗之后将钛片立于50mL反应釜内衬中,加入20mL 1mol/L氢氧化钠。然后将反应釜置于180℃烘箱中反应24h,在钛片上生成钛酸(H2Ti2O5)纳米线。将该钛箔在450℃马弗炉中煅烧2h,生成二氧化钛(TiO2)纳米线的钛片。将3.27mL苯胺单体溶于40mL去离子水后超声分散均匀形成有机相与水相混合的浊液,用1mol/L盐酸调节pH=5,将生长纳米线的钛片缓慢浸入悬置于烧杯中,距底部0.8-1.2cm,50℃水浴搅拌2h。然后加入2.48g过硫酸铵,调节pH等于2,常温搅拌6h。原位聚合反应结束后,将钛箔取出自然干燥,得到聚苯胺和二氧化钛纳米线复合负载钛箔。将20mL 0.13mol/L的硫脲溶液倒入100mL反应釜内衬。将上述钛箔立于反应釜内衬中。将反应釜置于200℃烘箱中水热反应48h。反应结束后, 再经过温度60℃干燥8h。得到具有汞气敏响应的硫掺杂聚苯胺和二氧化钛复合纳米线气敏薄膜。

实施例7

首先将钛箔打磨抛光,然后置于刻蚀液(氢氟酸,硝酸,水体积比为2:5:5)刻蚀20s,然后在纯去离子水超声清洗三次,在纯丙酮液中超声清洗三次。大量水冲洗之后将钛片立于50mL反应釜内衬中,加入20mL 1mol/L氢氧化钠。然后将反应釜置于220℃烘箱中反应24h,在钛片上生成钛酸(H2Ti2O5)纳米线。将该钛箔在450℃马弗炉中煅烧2h,生成二氧化钛(TiO2)纳米线的钛片。将3.27mL苯胺单体溶于40mL去离子水后超声分散均匀形成有机相与水相混合的浊液,用1mol/L盐酸调节pH=5,将生长纳米线的钛片缓慢浸入悬置于烧杯中,距底部0.8-1.2cm,50℃水浴搅拌2h。然后加入2.48g过硫酸铵,调节pH等于2,常温搅拌6h。原位聚合反应结束后,将钛箔取出自然干燥,得到聚苯胺和二氧化钛纳米线复合负载钛箔。将20mL 0.13mol/L的硫脲溶液倒入100mL反应釜内衬。将上述钛箔立于反应釜内衬中。将反应釜置于220℃烘箱中水热反应48h。反应结束后, 再经过温度60℃干燥8h。得到硫掺杂聚苯胺和二氧化钛纳米线复合材料。

本发明的具体实施方式并非穷举,本领域技术人员不经过创造性劳动的简单复制和改进,应属于本发明权利要求的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号