首页> 中国专利> 基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器及其制造方法

基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器及其制造方法

摘要

本发明涉及一种基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器及其制造方法,属于光电探测器领域。本发明是通过化学气相沉积技术在蓝宝石衬底上生长GaN纳米线阵列,然后在GaN纳米线阵列上沉积一层Pt纳米颗粒,最后利用光刻技术在单根沉积有Pt纳米颗粒的GaN纳米线两端沉积一层金属电极。紫外探测器的光电性能测试结果显示,相比于没有Pt纳米颗粒修饰的GaN纳米线紫外光电探测器,有Pt纳米颗粒修饰的GaN纳米线紫外光电探测器显示出更大的光电流、更高的光响应度、外量子效率、开/关比,以及更快的开光速度和更好的光电流稳定性,具有很好的潜在应用。另外,该器件制造工艺简单、重复性强、工艺可控性强、成本低。

著录项

  • 公开/公告号CN108122999A

    专利类型发明专利

  • 公开/公告日2018-06-05

    原文格式PDF

  • 申请/专利权人 中国科学院金属研究所;

    申请/专利号CN201611068958.X

  • 申请日2016-11-29

  • 分类号

  • 代理机构沈阳优普达知识产权代理事务所(特殊普通合伙);

  • 代理人张志伟

  • 地址 110016 辽宁省沈阳市沈河区文化路72号

  • 入库时间 2023-06-19 05:36:53

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2019-10-22

    授权

    授权

  • 2018-06-29

    实质审查的生效 IPC(主分类):H01L31/0304 申请日:20161129

    实质审查的生效

  • 2018-06-05

    公开

    公开

说明书

技术领域

本发明涉及一种基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器及其制造方法,属于光电探测器领域。

背景技术

半导体紫外光电探测器是利用半导体对紫外光的吸收并由此产生的如光电导和光生伏特效应而制成的探测器,是一种重要的光子-电子转换器件。在已进入信息社会的今天,核心器件是信息化的基石。而作为核心器件的重要组成部分之一,紫外光电探测器自然也引起了人们广泛的关注,它被大量的应用在光波通讯、成像技术、光电电路、未来光存储、空间探索、环境监测、生物、医疗和军事等重要领域。如今热门的智能手机上也大量集成了紫外光电探测器,极大丰富了手机的各种功能。因此,紫外光电探测器性能的高低直接影响了信息时代发展的速度。而如何选取和合成优异的光电材料来制备高性能的紫外光电探测器,对民生和军事领域的发展至关重要。

目前,主要投入使用的仍然是硅基紫外光电管和光电倍增管。前者灵敏度低而且还需要附带滤光片,而后者则有体积笨重、易损坏、效率低等缺点,因此日益发展的宽禁带半导体材料成为人们关注的焦点。随着宽禁带半导体材料(ZnO,ZnS,SiC,GaN,Ga2O3等)的研究和突破,带动了各种器件的发展和应用。在这些材料中,GaN基材料具有很高的电子饱和速度、较高的熔点、极高的击穿电场、稳定的物理和化学特性,用其制作的紫外探测器能很好地在高温、宇航及军事等极端条件下工作。因此,GaN目前已成为紫外探测领域极具吸引力的材料。目前,GaN薄膜基紫外光电探测器已经初步在产业化得到应用。然而,随着产业化的发展,器件的集成度越来越高,材料的特征尺寸越来越小。薄膜材料已经难以满足器件高集成度的需求。而一维(1D)半导体纳米线由于其很小的特征尺寸、良好的结晶性、较大的比表面积、较高的载流子迁移率,以及优异的光提取和吸收效率被认为是构建未来高性能纳米器件的重要基本组成单元。然而,基于1DGaN纳米线的紫外光电探测器还存在着制备复杂、波长选择度差、光响应度和外量子效率不高等缺点,难以产业化。这大大限制了GaN纳米线紫外探测器在未来纳米器件上的应用。

发明内容

鉴于以上所述现有技术的缺点,本发明的目的在于提供一种成本低廉、工艺简单、光响应度和外量子效率高、开光速度快、探测能力强和光电流稳定的基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器及其制造方法。

为了实现上述目的,本发明的技术方案如下:

一种基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器,该紫外光电探测器由单根GaN纳米线、Pt纳米颗粒、SiO2/Si衬底以及金属电极组成,自下而上依次设置SiO2/Si衬底、单根GaN纳米线以及金属电极,SiO2/Si衬底的SiO2层置于Si层上方,单根GaN纳米线位于SiO2的上方,金属电极位于GaN纳米线的上方,单根GaN纳米线表面沉积有Pt纳米颗粒。

所述的基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器,Pt纳米颗粒的形貌为球形,直径为1~20nm。

所述的基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器,金属电极为Ti/Au、Ti/Al/Ti/Au、Cr/Au、Au、Ag、Ni或Ti/Al/Ni/Au,两个相对设置的金属电极分别沉积于GaN纳米线的两端,且厚度为10~200nm。

所述的基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器的制造方法,该方法具有以下步骤:

1)将H2PtCl4溶于乙二醇中得到的溶液摩尔浓度为0.2~0.6mM,并在室温下磁力搅拌时间为30~60分钟;

2)逐滴加入NaOH溶液,将乙二醇溶液的pH值调至9,在N2气保护下油浴回流加热;

3)自然冷却后,得到Pt纳米颗粒胶体溶液;

4)将高纯Ga2O3粉末置于Al2O3坩埚中,并将坩埚置于高温管式炉中石英反应管的中心区域;

5)利用沉积的方法在蓝宝石衬底上沉积一层Au薄膜;

6)将镀有Au薄膜的蓝宝石衬底放置于Al2O3坩埚的上方,并将镀有Au薄膜的面朝下;

7)将石英反应管通入Ar气来去除腔体内的残余O2

8)将反应管加温,待温度升至900℃±30℃时关闭Ar气,并通入NH3气;

9)继续升高温度至GaN纳米线的生长温度,保温后关闭加热装置;样品随炉自然冷却,得到GaN纳米线;

10)将所制备的GaN纳米线浸泡于Pt纳米颗粒胶体溶液中,浸泡后取出清洗并吹干,得到Pt纳米颗粒修饰GaN纳米线;

11)利用超声振荡、旋涂的方法,将单根GaN纳米线转移至SiO2/Si衬底;

12)采用光刻和电子束蒸发的方法,在Pt纳米颗粒修饰GaN纳米线的两端沉积一层金属电极,形成最终的基于铂纳米颗粒修饰GaN纳米线的紫外光电探测器。

步骤2)油浴回流加热的温度为150~170℃,时间为3~5小时。步骤3)Pt纳米颗粒胶体溶液的浓度为0.5~1.5mg/ml。步骤5)沉积的方法为电子束蒸发、热蒸发或磁控溅射,Au薄膜的厚度为5~10nm。步骤8)NH3气流量为190~210mL/min。步骤9)GaN纳米线的的生长温度为1000~1200℃,保温时间为30~60分钟。步骤10)浸泡时间为20~28小时,Pt纳米颗粒修饰GaN纳米线中的Pt纳米颗粒含量为0.4~0.8wt%。

与现有技术相比,本发明基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器的优点及有益效果在于:

1)相比于GaN薄膜,本发明的Pt纳米颗粒修饰GaN纳米线具有更大的比表面积以及更好的晶体质量和吸光系数。

2)由于Pt纳米颗粒的表面修饰,会在Pt纳米颗粒表面产生表面等离子共振。这种共振会产生很多特殊的光电学效应,如对光的吸收和散射以及金属表面附近电场增强效应等。因此,将Pt纳米颗粒修饰在GaN纳米线表面可以大幅提高光电子器件的性能。而且,Pt纳米颗粒吸附在半导体表面所引起的空间耗尽区,可以有效地促进光生电子-空穴对的分离,增加光生载流子的寿命,进一步提高光电流和光响应度。

3)不像Au和Ag(表面等离子共振频率在可见光和红外光区),本发明采用Pt纳米颗粒的局域表面等离子共振吸收峰恰好在紫外光区。所以,可以更好地利用Pt纳米颗粒表面等离子与GaN纳米线进行有效的共振耦合来提高紫外探测器的响应性能。

4)相比于没有Pt纳米颗粒修饰的GaN纳米线紫外光电探测器,有Pt纳米颗粒修饰的GaN纳米线紫外光电探测器显示出更大的光电流、更高的光响应度、外量子效率、开/关比,以及更快的开光速度和更好的光电流稳定性,具有很好的潜在应用。

5)本发明器件制造工艺简单、重复性强、工艺可控性强、成本低,适合大规模生产。

附图说明

图1是基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器的三维结构示意图。

图2中,(a)是Pt纳米颗粒的透射电子显微镜(TEM)图像;(b)是Pt纳米颗粒的直径的统计分布和高斯拟合。

图3中,(a)是Pt纳米颗粒修饰GaN纳米线的X射线衍射(XRD)图谱;(b)是Pt纳米颗粒修饰GaN纳米线的能量色散X射线光谱(EDS)。

图4中,(a)、(b)是GaN纳米线的扫描电子显微镜(SEM)图像;(c)(d)是Pt纳米颗粒修饰GaN纳米线的SEM图像。

图5中,(a)是Pt纳米颗粒修饰GaN纳米线的透射电子显微镜(TEM)图像;(b)Pt纳米颗粒修饰GaN纳米线的高分辨透射电子显微镜(HRTEM)图像。

图6中,(a)是Pt纳米颗粒修饰GaN纳米线紫外光电探测器在不同入射光波长条件下的I-V特性曲线;(b)是GaN纳米线和Pt纳米颗粒修饰GaN纳米线紫外光电探测器在380nm光照条件下的I-V特性曲线。

图7中,(a)是GaN纳米线紫外光电探测器的开关特性曲线;(b)是Pt纳米颗粒修饰GaN纳米线紫外光电探测器的开关特性曲线。

图8中,(a)是GaN纳米线紫外光电探测器在380nm光照条件下,不同入射光功率的I-V特性曲线;(b)是Pt纳米颗粒修饰GaN纳米线紫外光电探测器在380nm光照条件下,不同入射光功率的I-V特性曲线。

具体实施方式:

下面结合附图和具体实施例对本发明做进一步说明。

参照图1,本发明的基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器,自下而上依次有SiO2/Si衬底、单根GaN纳米线以及Ti/Au金属电极,相对设置的两个Ti/Au金属电极分别覆盖在单根GaN纳米线的两端,电源的两极分别通过导线与Ti/Au金属电极连接。其中:SiO2/Si衬底的SiO2层置于Si层上方,Ti/Au金属电极的金属Au位于金属Ti上方,单根GaN纳米线表面沉积有Pt纳米颗粒。

实施例:

本实施例中,基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器的制造方法,具体步骤如下:

1)首先,采用油浴的方法制备Pt纳米颗粒。将0.1377g的H2PtCl4溶于40ml的乙二醇中,并在室温下磁力搅拌30分钟。逐滴加入NaOH溶液,将溶有H2PtCl4的乙二醇溶液的pH值调至9。在N2气保护下油浴160℃回流加热4小时。自然冷却后,得到浓度为1mg/ml的Pt纳米颗粒胶体溶液,备用;

2)然后,采用化学气相沉积(CVD)的方法,以高纯Ga2O3粉末(纯度为99.999wt%)和氨气(NH3)分别作为Ga源和N源,制备GaN纳米线。将高纯Ga2O3粉末置于Al2O3坩埚中,并将坩埚置于高温管式炉中石英反应管的中心区域。利用磁控溅射的方法在蓝宝石衬底上沉积一层5nm厚的Au薄膜。之后将镀有Au薄膜的蓝宝石衬底放置于Al2O3坩埚上方,并将镀有Au薄膜的面朝下。将石英反应管通入Ar气来去除腔体内的残余O2。将反应管加温,待温度升至900℃时关闭Ar气,通入流量为200mL/min的NH3气。继续升高温度至1100℃并保温30分钟,关闭加热装置。样品随炉自然冷却,得到GaN纳米线,备用;

3)接着,将所制备的GaN纳米线浸泡于Pt纳米颗粒胶体溶液中,浸泡24h后取出清洗并吹干,得到Pt纳米颗粒修饰GaN纳米线,Pt纳米颗粒修饰GaN纳米线中的Pt纳米颗粒含量为0.61wt%;

4)最后,利用超声振荡、旋涂的方法,将单根GaN纳米线转移至SiO2/Si衬底。采用光刻和电子束蒸发的方法,在Pt纳米颗粒修饰GaN纳米线的两端分别沉积一层Ti/Au(40nm/60nm)金属电极,形成最终的基于Pt纳米颗粒修饰GaN纳米线的紫外光电探测器。

参照图2,从Pt纳米颗粒的的TEM图像(a)以及颗粒直径的统计分布的图像(b)中可以看出,本发明的Pt纳米颗粒的形状为球形,形貌规整、尺寸均一,平均直径约为1.4nm。

参照图3,从XRD图谱(a)可以看出,GaN纳米线在修饰Pt纳米颗粒之前和修饰Pt纳米颗粒之后,其(0002)的峰位并没有改变,说明Pt原子并没有进入到GaN纳米线的晶格中,只是沉积到GaN纳米线的表面。从EDS图谱(b)可以看出,Ga和N的化学计量比接近1:1,表明GaN纳米线很好的化学纯度。

参照图4,从GaN纳米线的SEM图片(a)、(b)可以看出,GaN纳米线近似垂直于蓝宝石基底生长,且排列整齐,尺寸均一,平均直径在180nm左右。在纳米线的顶端可以清晰看到有Au颗粒,表明GaN纳米线的生长机制是金催化气-液-固(VLS)机制。在修饰Pt纳米颗粒之后,从GaN纳米线的SEM图片(c)、(d)可以看出,GaN纳米线的整体形貌并没有发生明显的变化。

参照图5,从Pt纳米颗粒修饰GaN纳米线的TEM图像(a)和HRTEM图像(b)可以看出,GaN纳米线是单晶结构,并且有很多Pt纳米颗粒均匀的沉积在GaN纳米线的表面。

参照图6,从Pt纳米颗粒修饰GaN纳米线紫外光电探测器在不同入射光波长条件下的I-V特性曲线(a)可以看出,本发明的紫外光电探测器在没有光照和500nm光照条件下都显示出很小的电流,0.05nA(5V偏压)。当光照波长达到400nm时,电流有着微弱的增加。然而,进一步减低入射波长至390nm时,电流显著增加。最大光电流出现在光照波长为380nm时,光电流可达到2.6nA(5V偏压)。显示出探测器较大的光电流增益和良好的紫外光响应特性。从GaN纳米线和Pt纳米颗粒修饰GaN纳米线紫外光电探测器在380nm光照条件下的I-V特性曲线(b)可以看出,相比于没有Pt纳米颗粒修饰的GaN纳米线,有Pt颗粒修饰的GaN纳米线紫外光电探测器的光电流有着明显的增加,表明Pt纳米颗粒的修饰对GaN纳米线紫外光电探测器的性能有着显著的提高。

参照图7,从GaN纳米线紫外光电探测器的开关特性曲线(a)和Pt纳米颗粒修饰GaN纳米线紫外光电探测器的开关特性曲线(b)可以看出,在20个开关循环测试中,Pt纳米颗粒修饰后的GaN纳米线紫外光电探测器显示出更稳定的光电流、更快的响应时间(修饰前6.2s,修饰后0.65s)、更大的开/关比(修饰前11,修饰后101)。

参照图8,从GaN纳米线(a)和Pt纳米颗粒修饰GaN纳米线(b)紫外光电探测器在380nm光照条件下,不同入射光功率的I-V特性曲线可以看出,两个紫外探测器随着入射光功率的增加光电流也都逐渐增加,表明本发明的紫外光电探测器对入射光强度有着很好的响应特性,并且Pt纳米颗粒修饰后的GaN纳米线紫外探测器在所有入射光功率照射下的光电流都高于没有Pt纳米颗粒修饰的GaN纳米线紫外探测器。通过计算,本发明的紫外光电探测器的光响应度高达6.39×104(A/W)、外量子效率高达2.24×107,灵敏度可以达到9975。

以上所述,仅为本发明中的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭露的技术范围内,可轻易想到的变换或替换,都应涵盖在本发明的包含范围内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号