首页> 中国专利> EREG促进NSCLC细胞对EGFR-TKI产生耐药性原因的验证方法

EREG促进NSCLC细胞对EGFR-TKI产生耐药性原因的验证方法

摘要

本发明公开了一种EREG促进NSCLC细胞对EGFR‑TKI产生耐药性原因的验证方法,首先验证EREG在NSCLC细胞和患者中是否会诱导EGFR‑TKI耐药,若是,则验证EREG是否是通过增强抗凋亡水平的方式诱导的细胞对TKI s耐药,若否,则结束;然后,验证EREG诱导EGFR‑TKI耐药依赖于何种受体;之后,验证肿瘤细胞内表达的EREG是否会影响EGFR‑TKI的敏感性,若是,则结束,若否,则验证诱导EGFR‑TKI耐药的EREG是否可能来源于巨噬细胞。本发明通过一系列准确科学的分析验证,得出了巨噬细胞表达的EREG最可能是通过旁分泌作用促进EGFR突变的NSCLC细胞对EGFR‑TKI产生耐药性的结论,为EGFR‑TKI在治疗NSCLC的临床应用提供了更多的理论分析依据。

著录项

  • 公开/公告号CN112813164A

    专利类型发明专利

  • 公开/公告日2021-05-18

    原文格式PDF

  • 申请/专利权人 四川省肿瘤医院;

    申请/专利号CN202110063962.1

  • 申请日2021-01-18

  • 分类号C12Q1/6886(20180101);G01N33/68(20060101);G01N33/574(20060101);

  • 代理机构51242 成都环泰专利代理事务所(特殊普通合伙);

  • 代理人李斌;李辉

  • 地址 610000 四川省成都市武侯区人民南路4段55号

  • 入库时间 2023-06-19 11:03:41

说明书

技术领域

本发明涉及NSCLC治疗领域,特别是涉及一种EREG促进NSCLC细胞对EGFR-TKI产生耐药性原因的验证方法。

背景技术

EGFR-TKI是治疗NSCLC的常用靶向治疗药物,目前,NSCLC细胞对EGFR-TKI产生耐药性的原因,缺乏相关研究。

发明内容

针对上述问题,本发明提供了一种EREG促进NSCLC细胞对EGFR-TKI产生耐药性原因的验证方法,通过一系列准确科学的分析验证,得出了巨噬细胞表达的EREG最可能是通过旁分泌作用促进EGFR突变的NSCLC细胞对EGFR-TKI产生耐药性的结论,为EGFR-TKI在治疗NSCLC的临床应用提供了更多的理论分析依据。

本发明的技术方案如下:

一种EREG促进NSCLC细胞对EGFR-TKI产生耐药性原因的验证方法,包括以下步骤:

S1、验证EREG在NSCLC细胞和患者中是否会诱导EGFR-TKI耐药,若是,则进入步骤S2,若否,则结束;

S2、验证EREG是否是通过增强抗凋亡水平的方式诱导的细胞对TKIs耐药;

S3、验证EREG诱导EGFR-TKI耐药依赖于何种受体;

S4、验证肿瘤细胞内表达的EREG是否会影响EGFR-TKI的敏感性,若是,则结束,若否,则进入步骤S5;

S5、验证诱导EGFR-TKI耐药的EREG是否可能来源于巨噬细胞。

在进一步的技术方案中,步骤S1中,验证EREG在NSCLC细胞和患者中是否会诱导EGFR-TKI耐药的方法如下:

选择两个EGFR E746-A750del突变的NSCLC细胞株PC9和HCC827,通过CCK-8测定法分析7种EGFR配体对EGFR-TKIs敏感性的影响,并分析NSCLC患者肿瘤组织中EREG表达水平与厄洛替尼治疗反应之间的相关性,进而,由上述实验结果分析EREG在NSCLC细胞和患者中是否会诱导EGFR-TKI耐药。

在进一步的技术方案中,步骤S2中,验证EREG是否是通过增强抗凋亡水平的方式诱导的细胞对TKIs耐药的方法如下:

检测单独使用EGFR-TKI、EREG或联合二者处理PC9细胞后的细胞凋亡水平,以及分析EREG对细胞凋亡相关蛋白的影响,由上述实验结果,分析验证EREG是否是通过增强抗凋亡水平诱导的细胞对TKIs耐药。

在进一步的技术方案中,步骤S3中,验证EREG诱导EGFR-TKI耐药依赖于何种受体的方法如下:

采用CCK-8测定法分析PC9细胞分别用靶向ErbB2、ErbB3、ErbB4的shRNA或对照shRNA慢病毒感染以敲降目标蛋白的表达,得到可显著减弱EREG诱导的细胞对吉非替尼耐药性的受体,根据基因表达水平将患者分为该受体高和低表达组,比较两组NSCLC患者肿瘤组织中EREG表达水平与厄洛替尼治疗反应的相关性的差异,并采用免疫荧光实验分析EREG诱导EGRF-TKI耐药的分子机制,检测在EREG和/或吉非替尼处理后细胞下游信号通路激活情况,验证EREG诱导EGFR-TKI耐药依赖于何种受体。

在进一步的技术方案中,步骤S4中,验证肿瘤细胞内表达的EREG是否会影响EGFR-TKI的敏感性的方法如下:

通过免疫印迹分析EGFR-TKI敏感细胞株PC9和HCC827,以及耐药细胞株H1650和H1975中EREG的表达水平,并从HCC827-GR和PC9-GR细胞中提取细胞裂解液,进行免疫印迹检测,由实验结果验证肿瘤细胞内表达的EREG是否会影响EGFR-TKI的敏感性。

在进一步的技术方案中,步骤S5中,验证诱导EGFR-TKI耐药的EREG是否可能来源于巨噬细胞的方法如下:

用PMA诱导THP-1细胞分化为巨噬细胞(M0),然后分别用LPS/IFN-γ和IL-4/IL-13极化巨噬细胞,通过免疫印迹实验分析极化后巨噬细胞中EREG的表达水平,另外,用M-CSF诱导PBMC分化为巨噬细胞的条件培养基处理细胞后,进行相同的分析,根据分析结果,验证诱导EGFR-TKI耐药的EREG是否可能来源于巨噬细胞。

本发明的有益效果是:

本发明通过一系列准确科学的分析验证,得出了巨噬细胞表达的EREG最可能是通过旁分泌作用促进EGFR突变的NSCLC细胞对EGFR-TKI产生耐药性的结论,为EGFR-TKI在治疗NSCLC的临床应用提供了更多的理论分析依据。

附图说明

图1是本发明实施例步骤一的分析结果图;

图2是本发明实施例步骤二的分析结果图;

图3是本发明实施例步骤三的分析结果图一;

图4是本发明实施例步骤三的分析结果图二;

图5是本发明实施例步骤四的分析结果图;

图6是本发明实施例步骤五的分析结果图。

具体实施方式

下面结合附图对本发明的实施例作进一步说明。

实施例:

一、验证EREG在NSCLC细胞和患者中是否诱导EGFR-TKI耐药:

选择两个EGFR E746-A750del突变的NSCLC细胞株(PC9和HCC827)分析7种EGFR配体对EGFR-TKIs敏感性的影响,7种EGFR配体包括表皮生长因子(Epidermal growthfactor,EGF)、转化生长因子Ⅱ(Transforming growth factorⅡ,TGF-ɑ)、双调蛋白(Amphiregulin,AREG)、β细胞调节素(Betacelluin,BTC)、上皮调节蛋白(Epiregulin,EREG)、肝素结合性EGF样生长因子(Heparin-binding EGF,HB-EGF)。CCK-8分析显示,重组EREG处理后,两种细胞对吉非替尼,厄洛替尼和奥希替尼的敏感性显著降低,如图1A所示,与对照组相比,EREG组IC50均增加了2倍以上。接下来,本发明分析了NSCLC患者肿瘤组织中EREG表达水平与厄洛替尼治疗反应之间的相关性,如图1B所示。结果表明,EREG表达与厄洛替尼治疗后疾病进展呈正相关,EREG高表达组的8周疾病控制率为23.1%,而EREG低表达组为69.2%,表明EREG的高表达与患者的PFS缩短显著相关。

二、验证EREG是否是通过增强抗凋亡水平的方式诱导的细胞对TKIs耐药:

本发明推测EREG可能通过影响EGFR-TKIs诱导的细胞凋亡发挥作用,因此,本发明分别检测了单独使用EGFR-TKI、EREG或联合二者处理PC9细胞后的细胞凋亡水平。由流式细胞仪分析表明,EREG以剂量依赖性方式阻止了吉非替尼诱导的细胞凋亡,如图2A所示。特别是,由15nM吉非替尼诱导的细胞凋亡率为44.3%,而吉非替尼联合EREG组降至25.7%。同样,用EREG治疗后,15nM厄洛替尼诱导的细胞凋亡率由15.3%降至9.2%。此外,本发明也检测了EREG对细胞凋亡相关蛋白的影响。免疫印迹分析表明,与对照组相比,吉非替尼和厄洛替尼增强了cleaved-caspase9的表达,但是在添加EREG后,这种蛋白表达降低,如图2B所示。同时,我们在HCC827细胞中检测细胞凋亡相关蛋白cleaved-caspase8和cleaved-caspase3的表达水平也得到了相似的结果,如图2C所示。因此,这些结果表明EREG介导的细胞对EGFR-TKIs耐药可能与其抗凋亡作用相关。

三、EREG诱导EGFR-TKI耐药依赖于ErbB2:

细胞中EREG能够诱导EGFR和ErbB4形成同源二聚体,还可与ErbB家族其他受体形成异源二聚体。因此,本发明进一步分析了ErbB受体家族在EREG介导细胞耐药中的作用。PC9细胞分别用靶向ErbB2、ErbB3、ErbB4的shRNA或对照shRNA慢病毒感染以敲降目标蛋白的表达。CCK-8分析显示,与对照组相比使用两种不同的shRNA敲降表达ErbB2后可显著减弱EREG诱导的细胞对吉非替尼的耐药性,如图3A-B所示。同样,HCC827细胞也得到了相似的结果,如图3C-D所示。

接下来,本发明分析了NSCLC患者肿瘤组织中ErbB2表达水平与厄洛替尼治疗反应之间的相关性。根据基因表达水平将患者分为ErbB2高和低表达组。结果显示,在ErbB2高表达组中EREG表达与患者对厄洛替尼的反应呈显著负相关,而在ErbB2低表达组中则没有统计学意义,如图3E所示。

本发明进一步研究了EREG诱导EGRF-TKI耐药的分子机制。免疫荧光分析表明,在添加EREG的情况下,EGFR和ErbB2之间在细胞中发生很强的共定位作用,并且这种共定位作用在吉非替尼处理后仍然得以维持,如图4A所示。本发明也检测了在EREG和/或吉非替尼处理后细胞下游信号通路激活情况。结果发现在PC9对照组细胞中,EREG恢复了被吉非替尼阻断的ERK和AKT的磷酸化水平。但当敲降表达ErbB2后,在吉非替尼处理组,虽然pERK表达水平仍可由EREG的加入得以恢复,但pAKT则不能,如图4B所示。这些数据表明,EREG诱导的EGFR-TKI耐药可能依赖于EGFR/ErbB2异源二聚体形成以及下游PI3K/AKT途径。

四、验证肿瘤细胞内表达EREG不会影响EGFR-TKI敏感性:

本发明已经考察了细胞外添加重组EREG对EGFR-TKI耐药的作用。先进一步评估EGFR突变细胞系内EREG的表达是否对EGFR-TKI耐药有影响。首先,本发明分别检测了EGFR-TKI敏感细胞株(PC9和HCC827)和耐药细胞株(H1650和H1975)中EREG的表达水平。免疫印迹结果显示,EREG在HCC827细胞中表达最高,而在其他三种细胞中表达很低,如图5A所示。接下来,本发明从HCC827-GR和PC9-GR细胞中提取细胞裂解液,进行及免疫印迹检测。结果发现尽管HCC827GR细胞中EREG的表达显著高于亲本HCC827细胞,但在PC9-GR和PC9细胞中则没有显著差异,如图5B所示。

本发明通过shRNA慢病毒敲降表达HCC827-GR中EREG,同时将EREG cDNA导入PC9细胞获得PC9过表达EREG细胞株。但是,CCK-8分析显示细胞中EREG的敲降或过表达均未对吉非替尼的敏感性产生显著影响,如图5C所示。据报道,细胞内EREG表达是EGFR依赖性的,并可被EGFR的特异性抑制剂抑制表达,这表明EREG可能来源于肿瘤微环境中的其他细胞。

五、诱导EGFR-TKI耐药的EREG可能来源巨噬细胞:

通过分析NSCLC肿瘤微环境的单细胞RNA测序数据,本发明发现EREG在巨噬细胞群体中高度表达,如图6A-B所示。本发明用PMA诱导THP-1细胞分化为巨噬细胞(M0),然后分别用LPS/IFN-γ和IL-4/IL-13极化巨噬细胞。免疫印迹实验发现极化后巨噬细胞中EREG表达显著高于对照细胞,而且不被吉非替尼抑制表达,如图6C所示。在巨噬细胞条件培养基中,细胞对吉非替尼表现出显著的耐药性,如图6E所示。同样,我们用M-CSF诱导PBMC分化为巨噬细胞的条件培养基处理细胞后,获得了相似的结果,如图6D-F所示。综上所述,这些结果表明在肿瘤微环境中巨噬细胞表达的EREG可能通过旁分泌作用促进EGFR突变的NSCLC细胞对EGFR-TKI产生耐药性。

此外,上述实施例中涉及的到各检测实验方法如下:

1、CCK-8测定

将HCC827和PC9细胞以5000/孔密度接种于96孔板中,在含有1%FBS的培养基或巨噬细胞条件培养基(CM)中生长过夜。细胞经过不同试剂处理后,使用CCK-8(细胞计数试剂盒8)测定法测定细胞活力。每个孔中加入10μl CCK-8溶液,于37℃下孵育1-3小时,在Bio-Rad酶标仪上测量450nm的OD值。

2、实时定量PCR

使用RNeasy Mini Kit提取细胞的总RNA。NanoDrop 2000仪器测定RNA浓度。使用SYBR Green一步法试剂盒在CFX-Connect实时PCR检测系统上进行定量检测。使用2cqvalue of GAPDH-cq value of the target gene公式计算mRNA相对表达,GAPDH作内参对照。

引物序列如下:

EREG(Epiregulin)正向引物5'-TGGACATGAGTCAAAACTACT-3',

反向引物5'-GAAGTGTTCACATCGGACACC-3';

ErbB2正向引物5'-TCAGTGACCTGTTTTGGACCG-3',

反向引物5'-CGGGCCACGCAGAAGGGAGGG-3';

GAPDH正向引物5'ACCCAGAAGACTGTGGATGG-3',

反向引物5'-TTCAGCTCAGGGATGACCTT-3'。

3、细胞凋亡检测

PC9和HCC827细胞以3×105/孔密度接种于6孔板中,在含有1%FBS的培养基中生长过夜。分别用0、5、15nM吉非替尼/厄洛替尼和/或50ng/ml重组EREG处理细胞24小时,并以DMSO作为对照。按照细胞凋亡试剂盒操作说明,使用不含EDTA的胰蛋白酶消化细胞,用PBS洗涤,1500rpm离心5分钟。然后,将细胞以1×10

4、免疫印迹

细胞经过不同的试剂处理后,PBS洗涤并在上样缓冲液中裂解变性,将样品进行SDS-PAGE,膜封闭后,孵育一抗4度过夜,TBST洗涤后,二抗室温孵育1h,ECL试剂曝光显影,通过Tanon 5200化学发光成像仪分析结果。

5、慢病毒制备和病毒感染

将3μg慢病毒质粒与2.7μg包装质粒pCMV-dR8.9和0.3μg VSV-G混合5分钟来包装慢病毒,然后,加入582μl无血清Opti-MEM和18μl转染试剂XtremeGene HP于室温下混合15分钟,随后,将该600ul混合液滴加到含有293T细胞的培养皿中,37℃培养10h后,更换为含有20%FBS的培养基以利于病毒和细胞生长,培养24h后收第一次病毒,上清转入15ml离心管,1500rpm离心5min,-80℃冻存。

当细胞生长至35%密度时,更换含有病毒和聚凝胺(Polybrene)的新鲜培养基,病毒感染24小时后,更换含有2μg/ml嘌呤霉素(puromycin)的新鲜培养基,细胞在嘌呤霉素筛选下继续培养48小时,感染后的细胞可用于免疫印迹,细胞增殖和细胞凋亡检测。

6、免疫荧光试验

将PC9细胞以20000/孔密度接种于24孔板内细胞爬片上,血清饥饿培养过夜后,将50ng/ml EREG和/或10nM吉非替尼加入细胞中处理30分钟,随后,用预冷的PBS洗涤细胞3次,并在室温下用4%多聚甲醛固定15分钟,PBS洗涤3次后,用0.25%Triton-X 100细胞打孔5分钟,然后,10%牛血清白蛋白在37℃下封闭1小时,将anti-EGFR和anti-ErbB2抗体与细胞在4℃下孵育过夜,PBS洗涤3次,孵育Alexa488标记兔二抗和Alexa Fluor 647标记鼠二抗在室温下孵育1小时,PBS洗涤3次,用5μg/ml DAPI细胞核染色5分钟,PBS洗涤3次,然后将细胞爬片置于含有抗荧光淬灭剂的载玻片上,在尼康A1激光共聚焦显微镜的100×油镜下拍摄照片。

7、M1和M2巨噬细胞的极化

将1×10

8、公共数据

七名非小细胞肺癌患者的肿瘤组织的单细胞转录组学数据来自前期研究结果,标准化的单细胞RNA测序数据和细胞群体注释文件由Gene Expression Omnibus(GEO,GSE127465)下载,该队列中有四名女性和三名男性,中位年龄为74岁(范围为61-83岁),在组织学上,大多数患者(5/7,71.4%)被诊断为腺癌。

非小细胞肺癌的基因表达谱是在前期研究肺癌靶向治疗(BATTLE)试验中从活检组织中获得,标准化的基因表达数据和相应的临床信息可从GEO(GSE33072)下载,该研究纳入了26名接受厄洛替尼治疗的患者。

9、统计分析

使用GraphPad Prism 7软件计算吉非替尼或厄洛替尼的剂量-反应曲线和半数抑制浓度(IC50),未配对学生t检验用于统计流式细胞仪数据和qPCR数据,使用学生t检验或Wilcoxon检验比较患者亚组之间EREG和其他EGFR配体的基因表达,使用Kaplan-Meier曲线和对数秩检验分析患者的无进展生存期,单细胞转录组图谱通过使用t-SNE图进行可视化,其中EREG表达水平标记为细胞,计算每位患者的每个细胞群中EREG[+]细胞的百分比,使用Kruskal-Wallis秩和检验比较了不同细胞群体之间EREG[+]率的差异,除非特别说明,以上数据均使用R软件(v3.5.1,https://www.r-project.org/)进行统计分析,p值小于0.05被认为具有统计学意义。

以上所述实施例仅表达了本发明的具体实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号