首页> 中国专利> 基于改进单纯形法的航空发动机加速过程最优控制方法

基于改进单纯形法的航空发动机加速过程最优控制方法

摘要

本发明提出一种基于改进单纯形法的航空发动机加速过程最优控制方法,根据航空发动机的特点,对改进单纯形法进行了改进,对反射中心进行了改进,并添加了“顶点平移”策略。顶点平移操作可加快搜索速度,减少迭代次数,快速收敛到最优解。将改进改进单纯形法用于加速过程寻优,输出最优控制变量给航空发动机。本发明可以实现发动机加速过程的最优控制,在保证发动机安全工作前提下,缩短发动机加速时间,有效改善发动机加速性能,提高飞机的机动性。

著录项

  • 公开/公告号CN112943479A

    专利类型发明专利

  • 公开/公告日2021-06-11

    原文格式PDF

  • 申请/专利权人 西北工业大学;

    申请/专利号CN202110087914.6

  • 发明设计人 缑林峰;刘志丹;杨江;张猛;吴贞;

    申请日2021-01-22

  • 分类号F02K1/00(20060101);F02K1/16(20060101);G06F30/20(20200101);

  • 代理机构

  • 代理人

  • 地址 710072 陕西省西安市碑林区友谊西路127号

  • 入库时间 2023-06-19 11:22:42

说明书

技术领域

本发明涉及航空发动机控制技术领域,尤其涉及一种基于改进单纯形法的航空发动机加速过程最优控制方法。

背景技术

航空发动机是飞机的心脏,是衡量一个国家航空事业发展水平的重要指标之一,因此对强化动力系统的研究对提升国家航空技术整体水平具有重要意义。由于航空发动机的工作过程复杂多变,且具有强非线性、多控制变量、时变、复杂的结构特点,因此,对发动机控制问题的研究比一般控制系统更为困难。

现代战机对飞机的机动性要求非常高,良好的机动性就要求发动机具有良好的加速性能。加速过程控制是航空发动机过渡态控制的一种,相较于发动机起动、接通/切断加力、减速控制,加速过程控制对发动机以及飞机性能的影响更为明显。发动机的加速过程直接影响战斗机的重要飞行指标(如:战斗机加速、爬升和紧急着陆复飞等等),因此,研究发动机加速过程的最优控制,改善发动机加速性能具有重要意义。

国内外在发动机加速过程的最优控制研究中虽然取得了一定成果,但也存在许多尚未解决的技术难题或待改进之处。比如,单纯形法具有超线性收敛速度,迭代次数少,但是基本单纯形法对初值敏感,易陷入局部最优解,不适宜应用于复杂的航空发动机加速过程寻优控制中。

发明内容

为解决现有技术存在的问题,本发明提出一种基于改进单纯形法的航空发动机加速过程最优控制方法,对单纯形法进行改进,并将改进的单纯形法应用于发动机加速过程寻优控制,实现发动机加速过程的最优控制,提高发动机的加速过程性能,提高飞机的机动性。

本发明的技术方案为:

首先建立航空发动机的非线性数学模型,然后以改进单纯形法来进行发动机加速过程寻优,以实现某型航空涡扇发动机加速过程最优。

所述一种基于改进单纯形法的航空发动机加速过程最优控制方法,其特征在于:第一步建立航空发动机的非线性数学模型;第二步根据发动机加速过程确定相应的目标函数和约束函数;第三步以改进单纯形法优化计算;第四步输出最优控制变量给航空发动机。

所述一种基于改进单纯形法的航空发动机加速过程最优控制方法,其特征在于:所述改进单纯形法是在基本的单纯形法上进行改进,主要对反射中心进行改进,并且添加了“顶点平移”策略。其基本思想是首先对n+1个顶点的目标函数值进行最优搜索,确定平移方向;然后将单纯形中心点向目标函数值最好顶点方向适度平移,在迭代的末端过程,n+1个顶点与中心点近乎重合,依靠顶点自身的迭代已经可以很好的逼近最优解,此时如果继续进行顶点平移反而会添加扰动,增加迭代次数。因此,当迭代误差小于进行平移操作的误差阈值时,则放弃顶点平移操作。

所述航空发动机的非线性数学模型为

y=f(x)

其中

所述加速过程考虑的约束条件有:涡轮前温度不超温、高压压气机不喘振、高压转子不超转、风扇不超转、燃烧室不富油熄火、主燃烧室供油量不超过其最大供油量等等。优化问题的数学描述如下:

其中控制变量x=[W

采用线性加权法将多目标函数转化为单目标函数,来确定寻优目标函数。即

对上式进行离散化和归一化处理。这样处理的目的是为了消除目标函数中各参数量纲和量值变化范围的不同对优化结果的影响。最终的寻优目标函数可以写成以下形式:

上式中,ω

参照目标函数的形式,对航空发动机约束条件也进行离散化和归一化处理:

以上g

其中ω=[ω

所述改进单纯形法的算法流程为

(1)初始化。对n维非线性模型,给定初始顶点X

X

其中,p

a是单纯形边长;

(2)计算各顶点的目标函数值f(X

并计算反射中心点

其中

(3)如果收敛误差大于平移操作误差阈值ε

其中,λ∈(0,0.2)是平移系数。

(4)进行单纯形反射、收缩、扩张、减小棱长操作计算;

(5)如果收敛误差err大于迭代精度ε

进一步的,所述控制变量为调节主燃油流量W

有益效果

与现有技术相比较,本发明的基于改进单纯形法的航空发动机加速过程最优控制方法,对单纯形法进行改进,对反射中心进行了改进,并添加了“顶点平移”策略。顶点平移操作可加快搜索速度,减少迭代次数,快速收敛到最优解。并将改进的单纯形法应用于发动机加速过程寻优控制,实现发动机加速过程的最优控制,在保证发动机安全工作前提下,缩短发动机加速时间,有效改善发动机加速性能,提高飞机的机动性。

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

本发明的上述和/或附加的方面和优点结合下面附图对实施例的描述中将变得明显和容易理解,其中:

图1是本发明发动机加速过程寻优控制流程图;

图2是本发明单纯形法的寻优操作示意图;

图3是本发明改进的单纯形法流程图。

具体实施方式

本发明解决的问题是航空发动机的加速过程寻优控制。发动机寻优问题就是为了使发动机的加速过程达到最优,选取最优控制方法寻找一组最优控制量(主燃油流量W

以某型航空涡扇发动机非线性数学模型为研究对象,建立加速过程的相应目标函数,利用优化算法对发动机进行优化计算,即可得到加速过程的满足最优性能指标的最优控制变量,在保证发动机安全工作前提下,缩短发动机加速时间,有效改善发动机加速性能。

本发明在总结前人成果的基础上,根据航空发动机的特点,对单纯形法进行改进,并应用于发动机寻优控制中。

1、由于航空发动机加速过程寻优控制需要依据发动机当前工作状态参数做出控制决策,因此,进行加速过程最优控制方法研究时,通常以航空发动机数学模型取代真实的发动机。由于航空发动机的建模技术已经非常成熟,这里不再赘述,直接给出建立的发动机非线性模型

y=f(x)

其中

2、改进单纯形法的设计

航空发动机的动态性能寻优控制中的最短响应时间控制模式是指在保证发动机安全工作前提下,缩短发动机加速时间。最短响应时间控制模式通常用于发动机加速过程,有效改善发动机的加速性能。发动机加速过程寻优控制流程如图1所示,其基本思想是:首先以所建立的涡扇发动机非线性数学模型为基础,在确保发动机安全运行的前提下,以缩短发动机加速时间为优化目标,然后寻求最优的控制计划,充分挖掘发动机的性能潜力以达到优化的目的。由于航空发动机具有强非线性性、高复杂性等特点,运用传统的优化方法难以同时提高优化精度和速度,所以必须采用更有效的优化算法来解决此问题。

单纯形法不需要计算出目标函数的梯度,能加速计算收敛速度,缩减计算时间,但是常规单纯形法缺点在于太过依赖于初始值,迭代过程过于繁琐,不能直接用在航空发动机加速过程的寻优控制中。因此,对单纯形法进行改进,并将改进的单纯形法用于航空发动机加速过程的寻优控制中。

单纯形是指n维空间具有n+1个顶点的凸多面体。单纯形法是直接法中计算比较简单,几何概念比较清晰的一种算法。单纯形法是对n维空间的(n+1)个点上的目标函数值进行比较,去掉其中最坏的点,代之以新的顶点、新的点与前面余下的点又构成一个新的单纯形。每次把坏的点去掉,把好的点留下来,逐步地剔除目标函数最优点不可能存在的空间,直到将最优点包容在单纯形内,再将单纯形的几何尺寸缩小到小于收敛准则,就完成了最优点的搜索。

本发明设计一种改进的单纯形法,主要对反射中心进行改进,并且添加了“顶点平移”策略。其基本思想是首先对n+1个顶点的目标函数值进行最优搜索,确定平移方向;然后将单纯形中心点向目标函数值最好顶点方向适度平移,在迭代的末端过程,n+1个顶点与中心点近乎重合,依靠顶点自身的迭代已经可以很好的逼近最优解,此时如果继续进行顶点平移反而会添加扰动,增加迭代次数。因此,当迭代误差小于进行平移操作的误差阈值时,则放弃顶点平移操作。

单纯形的不同形成方法,就形成了各种单纯形法。通常有正规单纯形法、特殊单纯形法、Long系数表法、利用均匀设计构造初始单纯形法等等。本发明选用正规单纯形法构造初始单纯形。正规单纯形指的是n+1个顶点间的距离都相等的单纯形。构造正规单纯形的方法如下:

设n维单纯形的一个顶点为

X

其余n个顶点分别取为

X

X

…………………………………

X

式中:

a为单纯形的边长,根据具体情况确定。

改进单纯形法的搜寻方法包含4种操作,即反射、延伸、收缩和缩小棱长,如图2所示。

本发明选择正规单纯形作为初始单纯形。单纯形法的迭代过程:

是搜索的第k阶段(k=0,1,…)上E

和当前最好点

以及当前次差点

E

反射:

求在

式中,α为给定的反射系数,一般取α=1,此时

本发明对反射中心进行了改进,新算法的反射中心点是剔除最差点

其中

扩张:

如果

计算扩张点。其中γ>1是扩张系数,一般取2.0。

如果

收缩:

如果对所有的i≠h有

其中0<β<1是收缩系数。

如果

计算

缩小:

如果

再返回第一步,进行第k+1阶段搜索。

每一次得到一个新的单纯形时,是否已得到满意的结果,都要进行检验。设预先给定精度ε,则按下列收敛准则

检验之。若上式成立,停止迭代,输出

以上四个操作如图2所示。

本发明在常规单纯形法的基础上,对反射中心进行了改进,并添加了“顶点平移”策略。顶点平移操作可加快搜索速度,减少迭代次数,快速收敛到最优解。改进单纯形法算法流程如图3所示:

(1)初始化。对n维非线性模型,给定初始顶点X

X

其中,p

a是单纯形边长;

(2)计算各顶点的目标函数值f(X

并计算反射中心点

其中

(3)如果收敛误差大于平移操作误差阈值ε

其中,λ∈(0,0.2)是平移系数。

(4)进行单纯形反射、收缩、扩张、减小棱长操作计算;

(5)如果收敛误差err大于迭代精度ε

如上所述,在迭代过程中连续不断地向最优点移动单纯形,而且单纯形彼此相似,保证了单纯形不退化、不畸形,增强了该算法的收敛性。

3、基于改进的单纯形法的加速过程寻优控制

在保证发动机安全工作的前提下,采用改进的单纯形法对某型涡扇发动机进行加速过程寻优控制,在保证发动机安全工作的前提下,改进的单纯形法可以有效地缩短加速时间,达到寻优的目的。

发动机的加速时间定义为

式中:I为转子的转动惯量;n

从上式可以看出:决定加速时间的因素主要是加速过程中的涡轮剩余功率ΔN

上式中,n

要保证发动机在加速过程中稳定工作,本发明考虑的约束条件有:涡轮前温度不超温、高压压气机不喘振、高压转子不超转、风扇不超转、燃烧室不富油熄火、主燃烧室供油量不超过其最大供油量等等。

考虑到目标函数、约束条件以及控制变量的影响后,需要寻找一组合适的W

其中控制变量x=[W

发动机的加速过程是一个动态过程,需要得到的优化结果是随时间变化的控制变量的轨迹曲线,但改进的单纯形法只适用于静态问题,要达到求解动态问题的目的,必须对目标函数、控制变量及约束条件进行适当的处理。由上式可知,本发明采用的是多目标最优控制方法,采用线性加权法将多目标函数转化为单目标函数,来确定寻优目标函数。即

对上式进行离散化和归一化处理。这样处理的目的是为了消除目标函数中各参数量纲和量值变化范围的不同对优化结果的影响。最终的寻优目标函数可以写成以下形式:

上式中,ω

参照目标函数的形式,对航空发动机约束条件也进行离散化和归一化处理:

以上g

其中ω=[ω

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号