首页> 中国专利> 一种基于改进时域叠加法的近断层地震动拟合方法

一种基于改进时域叠加法的近断层地震动拟合方法

摘要

本发明涉及一种基于改进时域叠加法的近断层地震动拟合方法。包括:确定目标加速度反应谱;求解功率谱;由功率谱计算傅里叶幅值谱并与相位谱结合生成加速度时程;对生成加速度时程判断是否非平稳进而生成初始无脉冲地震动;对初始无脉冲地震动进行低频滤波生成近断层地震动时程的高频成分;使用等效速度脉冲模型生成近断层地震动时程的低频成分;对近断层地震动时程的高频成分和低频成分在时域叠加过程中的高低频峰值时刻提出了明确定义,生成新的近断层地震动低频成分并与近断层地震动高频成分在时域上进行叠加生成原始地震动反应谱;对原始地震动反应谱采用FFT法进行调整反应谱生成更符合实际情况近断层地震动。

著录项

  • 公开/公告号CN114966835A

    专利类型发明专利

  • 公开/公告日2022-08-30

    原文格式PDF

  • 申请/专利权人 福州大学;

    申请/专利号CN202210433801.1

  • 申请日2022-04-24

  • 分类号G01V1/28(2006.01);G01V1/30(2006.01);G01V1/36(2006.01);G06F17/14(2006.01);

  • 代理机构福州元创专利商标代理有限公司 35100;福州元创专利商标代理有限公司 35100;

  • 代理人陈明鑫;蔡学俊

  • 地址 362251 福建省泉州市晋江市金井镇水城路1号福州大学晋江科教园

  • 入库时间 2023-06-19 16:36:32

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2022-09-16

    实质审查的生效 IPC(主分类):G01V 1/28 专利申请号:2022104338011 申请日:20220424

    实质审查的生效

说明书

技术领域

本发明涉及一种基于改进时域叠加法的近断层地震动拟合方法。

背景技术

随着国民经济和科技水平的不断发展,近年来越来越多大尺寸的建(构)筑作为生命线被修建在近断层区域甚至跨越断层。这种建(构)筑的自振周期往往都比一般的建(构)筑物大,容易受到低频率激励的影响。而近断层地震动是一种含有丰富低频成分的地震动,因此,考虑近断层地震动对这种结构的影响是很有必要的。到目前为止,近断层脉冲型地震动的地震记录还很匮乏,这对于缺少这种地震记录的区域来说,在进行大型建筑物的抗震设计时,是没有实测地震记录可以作为地震动输入的。但人造地震动可以在短时间内产生具有满足拟建场地条件的一系列地震动,这能有效弥补这个不足。所以,有必要研究拟合近断层脉冲型地震动的方法。人工合成地震动不仅可以得到满足各种场地条件的地震波,而且在一定程度上也促进了结构抗震设计的发展。因此,研究能够合成尽可能符合实际情况地震动的方法,显得尤为重要。

现有技术1【1】近断层区域划分及近断层速度脉冲型地震动模拟,其详细步骤有以下几步:

步骤S1:确定目标加速度反应谱S

目标加速度反应谱根据《公路工程抗震规范》(JTGB02-2013)中的5.2.1条确定,其形式如下式所示:

式中:

T

T—结构自振周期;

S

S

步骤S2:计算目标功率谱S(ω);

根据当前采用提出的反应谱与功率谱转化的关系,其形式如下式所示:

式中:

S

S(ω)—目标功率谱;

ξ—阻尼比;

ω—结构自振频率;

T—结构自振周期;

γ—超越概率。

步骤S3:计算傅利叶幅值谱A(ω);

功率谱和傅里叶幅值谱的数学关系如下式所示:

式中:A(ω)—傅里叶幅值谱

步骤S4:计算相位谱;

生成在-2π到2π上均匀分布的相位谱;

步骤S5:由IFFT得到加速度时程x

采用下式所示的三角级数模型来模拟地震动X。

X=g(t)·x

式中:

ω

A(ω

N—目标反应谱的的频域中频率的分隔点数;

g(t)—强度包络函数;

x

X—地震动

利用快速傅里叶逆变换,计算得到平稳加速度时程;

步骤S6:乘以包络函数生成非平稳加速度时程;

为了将平稳加速度时程转化成非平稳加速度时程,通过乘以强度包络函数对生成的平稳加速度时程进行非均匀调制。包络函数的数学表达式如式所示

其中:

T

T

c—衰减阶段的变化速率。

步骤S7:与目标加速度反应谱拟合迭代,得到加速度时程;

为了让非平稳加速度时程的反应谱匹配目标加速度反应谱,需要对非平稳加速度时程进行迭代计算,使生成的非平稳加速度时程的反应谱逼近目标谱。具体的迭代计算步骤为:

a.计算出目标加速度反应谱与非平稳加速度时程的反应谱的比值;

b.对非平稳加速度时程作快速傅里叶变换计算得到相位谱和傅里叶幅值谱,将a中计算出的比值乘以傅里叶幅值谱;

c.将调整后的傅里叶幅值谱与相位谱结合,通过快速傅里叶逆变换计算得到平稳加速度时程;

d.乘以强度包络函数计算得到非平稳加速度时程;

e.计算非平稳加速度时程的反应谱与目标加速度反应谱之间的平均相对误差Em并判断其是否小于5%,若小于5%,则停止迭代计算,否则回到a。

经过n次迭代计算后,非平稳加速度时程的反应谱与目标加速度反应谱之间的平均相对误差为小于5%,即停止迭代计算。最终得到计算加速度反应谱曲线和目标加速度反应谱曲线.

步骤S8:将步骤S7最终生成的加速度时程经傅里叶变换得到傅里叶谱,将频率小于f

步骤S9:再将步骤S8最终生成的傅里叶幅值谱与步骤S4生成的相位谱结合,通过快速傅里叶逆变换计算生成高频加速度时程

步骤S10:采用等效速度脉冲模型来模拟低频速度脉冲时程:

式中ω(t)为包络函数,用式计算。

其中:

V

f

t

T—结构自振周期;

γ—衰减速率;

t

将上述低频速度脉冲时程求导,得到低频加速度时程;

步骤S11:高,低频成分叠加生成近断层脉冲型地震动;

将步骤S9得到的高频加速度时程和步骤S10得到的低频脉冲加速度时程叠加生成近断层脉冲型地震动。

现有技术1【1】基于时域叠加法得到的近断层脉冲型地震动存在拟合得到的近断层脉冲型地震动的反应谱与目标反应谱不吻合的缺点。这是因为现有方法中,先进行高频成分加速度时程与目标反应谱的调整(步骤S7-S9),然后进行高频成分与低频成分脉冲加速度时程在时域上的叠加(步骤S11),得到近断层脉冲型地震动。由于高频成分与低频成分叠加后,引入了新的低频成分后,原来的拟合得到的反应谱又发生了改变,因而会导致拟合得到地震动与目标反应谱有很有明显的出入。因此,现有技术的不足会导致拟合的近断层脉冲型地震动的反应谱与目标反应谱有差别的明显不足。

发明内容

本发明的目的在于提供一种基于改进时域叠加法的近断层地震动拟合方法,解决基于时域叠加法生成近断层地震动反应谱与目标反应谱不吻合的难题。目前基于时域叠加法生成近断层脉冲型地震动是先调整高频成分加速度时程的反应谱,实现了高频成分加速度时程的反应谱与目标反应谱的吻合,再与低频成分脉冲加速度时程在时域上进行叠加,最终生成的近断层脉冲型地震动的反应谱在整个周期段与目标反应谱相差较大。所以,虽然基于时域叠加法生成近断层地震动在时域上具有速度脉冲特性,但是其生成的近断层地震动反应谱与目标反应谱不吻合。

为实现上述目的,本发明的技术方案是:一种基于改进时域叠加法的近断层地震动拟合方法,包括:确定目标加速度反应谱;求解目标功率谱;由功率谱计算傅里叶幅值谱并与相位谱结合生成加速度时程;对生成加速度时程判断是否非平稳加速度时程进而生成初始无脉冲地震动;对初始无脉冲地震动进行低频滤波生成近断层地震动时程的高频成分;使用等效速度脉冲模型生成近断层地震动时程的低频成分;对近断层地震动时程的高频成分和低频成分在时域叠加过程中的高低频峰值时刻提出了明确定义,生成新的近断层地震动低频成分并与近断层地震动高频成分在时域上进行叠加生成原始地震动反应谱;对原始地震动反应谱采用FFT法进行调整反应谱生成更符合实际情况近断层地震动。

在本发明一实施例中,所述确定目标加速度反应谱的具体实现步骤如下:

1)、根据式(1)求出速度放大系数设计谱β

其中β

β

式中:β

2)、根据式(3)得等效加速度放大系数谱β

式中:β

3)、根据式(4)求得目标加速度反应谱S

S

式中:S

在本发明一实施例中,所述目标功率谱的计算公式如下:

式中:S

在本发明一实施例中,所述由功率谱计算傅里叶幅值谱并与相位谱结合生成加速度时程的具体实现步骤如下:

1)根据式(6)得到傅里叶幅值谱A(ω):

Δω=2π×f

式中:A(ω)为傅里叶幅值谱;Δω为频率间隔;S(ω)为目标功率谱;

2)计算相位谱;生成在-2π到2π上均匀分布的相位谱;

3)根据式(7)生成加速度时程x

式中:φ

在本发明一实施例中,所述对生成加速度时程判断是否非平稳加速度时程进而生成初始无脉冲地震动的具体实现步骤如下:

判断生成的加速度时程是否为非平稳加速度时程,若是,即直接生成非平稳加速时程,即初始无脉冲地震动X

X

式中:X

在本发明一实施例中,所述对初始无脉冲地震动进行低频滤波生成近断层地震动时程的高频成分的具体实现方式为:对生成的初始无脉冲地震动做傅里叶变换,将频率区间[0,f

在本发明一实施例中,所述使用等效速度脉冲模型生成近断层地震动时程的低频成分的具体实现步骤如下:

1)根据式(10)生成低频脉冲速度时程ν(t)

式中:ν(t)为低频脉冲速度时程;ω(t)为低频脉冲速度时程包络函数;V

2)对生成的低频脉冲速度时程进行一次求导得到低频成分脉冲加速度时程α(t);

3)得到近断层地震动时程的低频成分A

在本发明一实施例中,所述对近断层地震动时程的高频成分和低频成分在时域叠加过程中的高低频峰值时刻提出了明确定义,生成新的近断层地震动低频成分并与近断层地震动高频成分在时域上进行叠加生成原始地震动反应谱的具体实现步骤如下:

1)计算近断层地震动时程的高频成分A

ln(t

其中:M

2)计算近断层地震动时程的低频成分A

ln(t

其中:M

3)由高频峰值时刻t

σt=t

4)把近断层地震动时程的低频成分A

5)将新的近断层地震动时程的低频成分A

在本发明一实施例中,所述对原始地震动反应谱采用FFT法进行调整反应谱生成更符合实际情况近断层地震动的具体实现步骤如下:

1)求原始地震动的反应谱和目标加速度反应谱的平均相对误差;

2)判断得到的平均相对误差是否小于固定阈值;若平均相对误差大于固定阈值,则计算原始地震动的反应谱和目标加速度反应谱的比值,调整傅里叶幅值谱,进入步骤3);若平均相对误差小于等于固定阈值,则输出近断层脉冲型地震动A(t);

3)计算相位谱:重新生成在-2π到2π上均匀分布的相位谱;

4)根据式(15)生成新的加速度时程x

式中:φ

5)判断生成的加速度时程是否为非平稳加速度时程,若是,即直接生成非平稳加速时程,即新的地震动X

X

式中:X

6)根据生成的新的地震动计算地震动反应谱;求地震动的反应谱和目标加速度反应谱的平均相对误差,并判断其是否小于固定阈值;若平均相对误差大于固定阈值,则重复步骤3)~步骤5);若平均相对误差小于等于固定阈值,则输出近断层脉冲型地震动A(t)。

相较于现有技术,本发明具有以下有益效果:本发明提出的一种基于改进时域叠加法生成近断层地震动反应谱的方法,该方法生成的近断层地震动反应谱与目标反应谱相吻合。本发明先进行近断层脉冲型地震动高频成分拟合(步骤S1-步骤S8),再进行近断层脉冲型地震动低频成分拟合(步骤S9-步骤S11),最后利用FFT法对近断层脉冲型地震动的高频成分和低频成分在时域上叠加生成的地震动加速度时程的反应谱进行调整(步骤S16-步骤S21),得到近断脉冲型地震动。通过对调整后得到的近断层脉冲型地震动的反应谱与目标反应谱进行对比,可以看出经过循环调整后的近断层脉冲型地震动的计算反应谱与目标反应谱在中长周期段基本完全重合,在短周期段误差较小。所以基于改进时域叠加法生成的近断层地震动拟合得到的近断层地震动反应谱不仅都保留了高频成分和低频成分的特性,而且都能够很好的拟合目标反应谱。

附图说明

图1为目标近断层地震动目标反应谱曲线。

图2为现有技术拟合的近断层地震动。

图3为本发明方法拟合的近断层地震动。

图4为本发明拟合近断层地震动的反应谱。

图5为本发明一实施例方法流程图。

具体实施方式

下面结合附图,对本发明的技术方案进行具体说明。

本发明提出了一种基于改进时域叠加法的近断层地震动拟合方法,包括:确定目标加速度反应谱;求解目标功率谱;由功率谱计算傅里叶幅值谱并与相位谱结合生成加速度时程;对生成加速度时程判断是否非平稳加速度时程进而生成初始无脉冲地震动;对初始无脉冲地震动进行低频滤波生成近断层地震动时程的高频成分;使用等效速度脉冲模型生成近断层地震动时程的低频成分;对近断层地震动时程的高频成分和低频成分在时域叠加过程中的高低频峰值时刻提出了明确定义,生成新的近断层地震动低频成分并与近断层地震动高频成分在时域上进行叠加生成原始地震动反应谱;对原始地震动反应谱采用FFT法进行调整反应谱生成更符合实际情况近断层地震动。

本发明拟合近断层脉冲型地震动时程,包括三个模块,即模块一:高频成分拟合;模块二:低频成分拟合;模块三:高低频叠加后基于FFT法进行目标反应谱调整。其中,如图5所示,具体过程步骤如下:

模块一:高频成分拟合;

步骤S1:确定目标加速度反应谱S

目标加速度反应谱采用现有技术2【2】中的设计反应谱,其形式如式(1)所示:

步骤S1.1:根据式(1)求出速度放大系数设计谱β

其中β

β

式中:

β

T

T

T—结构自振周期;

Ω—各脉冲地震动记录速度放大系数谱最大值的平均值;

C

β

步骤S1.2:根据式(3)得等效加速度放大系数谱β

式中:

β

ω—结构自振频率;

PGV/PGA—峰值地面速度与峰值地面加速度比值;

步骤S1.3:根据式(4)求得目标加速度反应谱S

S

式中:

S

β

C

C

A—设计基本地震动加速度峰值;

步骤S2:根据式(5)得到目标功率谱S(ω):

式中:

S

S(ω)—目标功率谱;

ξ—阻尼比;

ω—结构自振频率;

T—结构自振周期;

λ—超越概率。

步骤S3:根据式(6)得到傅里叶幅值谱A(ω):

Δω=2π×f

式中:

A(ω)—傅里叶幅值谱;

Δω—频率间隔;

步骤S4:计算相位谱;生成在-2π到2π上均匀分布的相位谱;

步骤S5:根据式(7)生成加速度时程x

式中:

φ

ω

A(ω

N—目标反应谱的的频域中频率的分隔点数;

g(t)—强度包络函数;

x

步骤S6:判断步骤S5生成的加速度时程是否为非平稳加速度时程,若是,即直接生成非平稳加速时程,即初始无脉冲地震动X

步骤S7:根据式(8)生成初始无脉冲地震动X

X

式中:

X

g(t)—地震动包络函数;

t—时间;

T

T

c—衰减阶段的变化速率;

步骤S8:得到近断层地震动时程的高频成分A

模块二:低频成分拟合;

步骤S9:根据式(10)生成低频脉冲速度时程ν(t)

式中:

ν(t)—低频脉冲速度时程;

ω(t)—低频脉冲速度时程包络函数;

V

t—时间;

f

t

T—结构自振周期;

γ—衰减速率;

t

步骤S10:对步骤S9生成的低频脉冲速度时程进行一次求导得到低频成分脉冲加速度时程α(t)

步骤S11:得到近断层地震动时程的低频成分A

模块三:FFT法调整近断层脉冲型地震动加速度时程的反应谱

步骤S12:计算由步骤S8得到的近断层地震动时程的高频成分A

ln(t

其中:

M

t

步骤S13:计算由步骤S11得到近断层地震动时程的低频成分A

ln(t

其中:

M

t

步骤S14:由步骤S12得到的高频峰值时刻t

σt=t

步骤S15:把近断层地震动时程的低频成分A

步骤S16:将由步骤S15得到新的近断层地震动时程的低频成分A

步骤S17:求原始地震动的反应谱和目标加速度反应谱的平均相对误差。

步骤S18:判断步骤S17得到的平均相对误差是否小于固定阈值。若平均相对误差大于固定阈值,则计算原始地震动的反应谱和目标加速度反应谱的比值,调整傅里叶幅值谱,进入步骤S19;若平均相对误差小于等于固定阈值,则输出近断层脉冲型地震动A(t)。

步骤S19:计算相位谱:重新生成在-2π到2π上均匀分布的相位谱;

步骤S20:根据式(15)生成新的加速度时程x

式中:

φ

ω

A(ω

N—目标反应谱的的频域中频率的分隔点数;

g(t)—强度包络函数;

x

步骤S21:判断步骤S20生成的加速度时程是否为非平稳加速度时程,若是,即直接生成非平稳加速时程,即新的地震动X

X

式中:

X

g(t)—地震动包络函数;

t—时间;

T

T

c—衰减阶段的变化速率。

步骤S22:根据步骤S21生成的新的地震动计算地震动反应谱;求地震动的反应谱和目标加速度反应谱的平均相对误差,并判断其是否小于固定阈值。若平均相对误差大于固定阈值,则重复步骤S19~步骤S21;若平均相对误差小于等于固定阈值,则输出近断层脉冲型地震动A(t)。

本发明实施范例

1、地震动拟合目标:

采样频率fs=100Hz,地震动总持时T=20s。工程场地临近断层的潜在矩震级为Mw=6.5级;工程场地震中距为R=8km;场地类别为Ⅱ类;抗震设防烈度为7度,50年超越概率10%对应的设计基本地震动加速度峰值为0.15g。场地系数Cs=1.0,场地特征周期Tg=0.9s,速度脉冲周期Tp=2.09s,风险系数CR=1,阻尼调整系数Cd=1。目标近断层地震动目标反应谱曲线如图1所示。

2、现有技术的拟合结果文献[王宇航,2015]

(1)经现有技术文献[王宇航,2015]【1】的步骤S1~S11,得到原有方法结果如图2(a)~2(d)所示;

3、本申请技术的拟合结果

(2)经本发明方法得到的结果如图3(a)~3(d)所示;

4、本申请技术与现有技术的效果比较

图4为本发明方法与现有技术的效果比较图。

参考文献:

【1】王宇航.近断层区域划分及近断层速度脉冲型地震动模拟[D].西南交通大学,2015.

【2】杨华平,钱永久,黎璟,等.近断层脉冲型地震设计谱研究[J].中国公路学报,2017,30(012):159-168.。

以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号