您现在的位置: 首页> 研究主题> 拉丝模

拉丝模

拉丝模的相关文献在1983年到2023年内共计889篇,主要集中在金属学与金属工艺、化学工业、机械、仪表工业 等领域,其中期刊论文221篇、会议论文15篇、专利文献151580篇;相关期刊82种,包括超硬材料工程、天津冶金、中国钨业等; 相关会议11种,包括第十五届中国科协年会、2011金属制品行业技术信息交流会、全国金属制品信息网第22届年会等;拉丝模的相关文献由1100位作者贡献,包括孙宁、朱家德、钱正兴等。

拉丝模—发文量

期刊论文>

论文:221 占比:0.15%

会议论文>

论文:15 占比:0.01%

专利文献>

论文:151580 占比:99.84%

总计:151816篇

拉丝模—发文趋势图

拉丝模

-研究学者

  • 孙宁
  • 朱家德
  • 钱正兴
  • 金志敏
  • 曹凤国
  • 方海江
  • 王子尊
  • 葛益军
  • 黄建宇
  • 张春涛
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 刘勋
    • 摘要: 如何提高使用寿命是硬质合金拉丝模研究的重要方向.而模芯材质、内孔涂层和内孔结构设计是影响硬质合金拉丝模寿命的重要因素.由于硬质合金拉丝模存在耐磨性较差、寿命较短的缺点,本文从基体材质优化、涂层处理、内孔结构优化三个方向,介绍了提高其寿命的研究进展.通过以下方法可以有效地提高硬质合金拉丝模的使用寿命:低钴超细晶硬质合金,添加稀土元素,金刚石涂层处理,选择合适的润滑区、工作区、定径区高度和圆锥半角.
    • 邵永清; 张东; 施瑾; 赵丽
    • 摘要: 为提高高碳镀锌钢丝拉拔速度,减少钢丝表面锌层质量损失,以2.20 mm C80DA钢镀锌后拉拔至0.52 mm为例,设计不同拉丝模材质、孔型尺寸及硬质合金模和聚晶模的有效组合、拉拔模链的工艺优化及润滑液的合理调控等系列试验,结果表明:通过系列工艺的优化调整,高强度镀锌制绳钢丝拉拔速度可提高至500 m/min,解决了拉拔速度低,锌层损失大等生产问题.
    • 武文花; 戴炳蔚
    • 摘要: 孔型结构是影响硬质合金拉丝模质量的决定性因素之一.认识和改进孔型结构是硬质合金拉丝模研究的重要方向.本文介绍了国内外硬质合金拉丝模孔型结构的研究发展状况,介绍了直线型模与弧线型模的特点,分析比较了拉丝模不同孔型结构的优缺点.通过以下方法可以有效地提高拉丝模的使用寿命和稳定性:加长润滑区、工作区长度,选择合适的模孔半角和定径区长度.为了对孔型进行必要的改进和修复,高精度的测量手段必不可少.随着拉丝生产拉拔设备技术和工艺的提升,以及被拉拔材料高强高韧,设计优化拉丝模孔型结构有利于提高线材拉制质量和模具使用寿命.
    • 邱从怀; 吴建峰; 刘红芳
    • 摘要: 为研究金刚石涂层拉丝模在高碳高强度钢丝拉拔领域的运用,采用金刚石涂层与钨钢拉拔模拉拔80#钢丝进行对比研究分析.研究结果表明,金刚石涂层拉丝模摩擦系数较低的优势在高碳钢丝拉拔中未有明显体现,但较大规格模具使用寿命优势极为明显,D≥2.03 mm模具使用寿命达400 t以上,拉拔钢丝尺寸稳定性较好,且表面粗糙度较低.
    • 王小刚; 贺孝宇; 李伟
    • 摘要: To introduces the production process of diameter 3.2 mm,1 960 MPa tensile strength galvanized steel wire for rope.Aimming at such problem as the steel wire is difficult to produce,high strength,wire breaking,poor toughness and unqualified shear test is easy to appear,the solving measures are put forward:surface treatment adopt two times phosphating in the production of steel wire,increase wire phosphating film thickness,improve steel wire phosphating quality;steel wire adopt 9 pass wire drawing,at the same wire drawing process,the dies have different drawing work cone angle from the first pass to end pass according to the principle of from big to small,and to ensure the die ⊿ value in 1.2 ~ 2.0 at each pass.After adopting these measures,the finished wire tensile strength is from 2 020 to 2 080 MPa,torsion is not less than 28 times,bend is not less than 14 times,meet the product requirements.%介绍Φ3.2 mm、抗拉强度1 960 MPa镀锌制绳钢丝生产工艺.针对该钢丝强度要求高,生产难度大,容易出现断丝、韧性差、剪切试验不合格等问题,提出解决措施:钢丝生产过程中,表面处理时采用2次磷化处理,增加钢丝磷化层厚度,提高钢丝磷化质量;钢丝拉拔时采用9道次拉拔,同一拉拔工艺拉丝模具采用不同工作锥角,从第1道次到最后1道次按照从大到小的原则,并确保各道次模具⊿值在1.2 ~2.0.采取措施后,成品钢丝抗拉强度2 020~2 080 MPa,扭转不小于28次,弯曲不小于14次,达到产品要求.
    • 王新昶; 王成川; 孙方宏; 沈彬
    • 摘要: The wear-resisting property of the mold can be significantly improved by depositing HFCVD diamond film on the surface of the inner bore of the traditional cemented carbide drawing mold,and the application effect can be improved as friction coefficient during the drawing process being reduced.However,with regard to small-aperture wire drawing mold,there is an extremely high requirement for alignment of the hot filament when depositing diamond film on its inner bore surface through HFCVD method.Meanwhile,the two essential conditions-"filament temperature as high as possible" and "substrate temperature being controlled within appropriate range"-are hard to be satisfied simultaneously.Parallelogram wire drawing device that can ensure the alignment of the hot filament and auxiliary heat radiating clamping fixture that can meet the double temperature requirement of the inner bore surfaces of hot filament and wire drawing mold have been developed and introduced in this article.Enameled wire drawing mold of a diameter of 1.3 mm was selected as the study subject.Technological parameters related to the temperature of the inner bore surface of the wire drawing mold during the deposition process of diamond film coating have been optimized through computational fluid dynamics simulation method and orthogonal preparation method based on the finite volume method.Based on that,high quality BDM-UM-UNCCD (boron-doped micro-crystalline,undoped micro-crystalline and undoped nano-crystalline composite diamond) film with exellent comprehensive performance which can meet the requirement of high speed drawing production of the high quality enamelled wire is uniformly deposited on the inner bore surface of the wire drawing mold.As a result,the service life of the mold has been significantly improved and an exellent application effect has been achieved.%在传统的硬质合金拉拔模具内孔表面沉积热丝化学气相沉积(Hot filament chemical vapor deposition,HFCVD)金刚石薄膜可显著提升模具的耐磨损性能,降低拉拔过程中的摩擦系数,改善模具应用效果,但是对于小孔径拉丝模而言,采用HFCVD方法在其内孔表面沉积金刚石薄膜对热丝的对中性提出了极高要求,且难以同时满足"热丝温度尽量高"和"基体温度控制在合适的范围内"这两个必要条件.文章开发了可保证热丝对中性的平行四边形拉丝装置及可满足热丝及拉丝模内孔表面双重温度要求的辅助散热装夹夹具,并选取定径带直径为1.3 mm的漆包线拉丝模作为研究对象,结合基于有限体积法的计算流体动力学仿真方法和正交配制方法,对该工况下内孔金刚石薄膜涂层沉积过程中与拉丝模内孔表面温度场分布相关的工艺参数进行了仿真优化,在此基础上,在拉丝模内孔表面均匀沉积了可满足高品质漆包线高速拉拔生产需求的、具有良好综合性能的高质量硼掺杂微米-未掺杂微米-未掺杂纳米复合金刚石(boron-doped micro-crystalline,undoped micro-crystalline and undoped nano-crystalline composite diamond,BDM-UM-UNCCD)薄膜,显著提高了模具寿命,获得了良好的应用效果.
    • 卢学军; 刘嘉霖; 孔令印; 王瑞雪; 邓福铭
    • 摘要: 分析切割钢丝拉拔过程中压缩变形功、摩擦阻力功及在变径区由于速度突变而消耗的多余变形功,分别推导其相应的功率损耗数学公式,最后得出切割钢丝拉拔过程中总功率损耗表达式。以太阳能硅晶片切割钢丝用 PCD 拉丝模为例,计算出0.12 mm 切割钢丝用 PCD 拉丝模具的最佳压缩半角α=3.675%In die drawing,the energy consumption of compress deformation and friction is analyzed,as well as that of velocity change at the diameter transition zone in the process of wire drawing.The upper bound theorem is applied to derive the formula of the above three energy consumption in drawing process,then the formula of the total energy consumption in drawing process is derived,and the best reduction angle of polycrystalline diamond drawing die for drawing ϕ0.12 mm steel wire is calculated out.The results show that the best reduction angle and the minimum drawing force of polycrystalline diamond drawing die areα=3.675 ° and F =2.49 N separately.when drawing ϕ0.12 mm steel wire.
    • 刘阳; 莫彩萍; 程渊; 徐红
    • 摘要: 在中细规格钢丝湿式拉拔生产中,润滑液的润滑和冷却效果对拉丝模的使用寿命、钢丝质量和拉拔速度等都有明显影响.影响润滑液使用性能和使用寿命的因素主要有温度、润滑液质量浓度、杂质含量以及细菌.通过加大润滑液循环冷却量和散热面积并增设温控系统,增设润滑液在线过滤系统,加强日常维护与管理对润滑系统进行改进,吨钢丝润滑液损耗下降31.7%,拉拔速度可提高约36%,模耗下降45.5%,有效降低生产成本,提高产品质量.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号