【24h】

TRITIUM ISSUES IN NEXT STEP DEVICES

机译:下一步设备中的RIT问题

获取原文
获取原文并翻译 | 示例

摘要

Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. Tritium fuel has been successfully used in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) producing 10 and 16 MW of fusion power respectively. This experience together with focussed laboratory studies, has illuminated the challenges. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma facing components will scale up with the pulse length from being barely measurable on existing machines to cm-scale. Magnetic Fusion Energy (MFE) devices with carbon plasma facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove codeposited tritium from carbon plasma facing components in tokamaks. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. The relevant plasma material interactions are comprehensively reviewed in. Operation of next step experiments will help resolve key tritium issues in the design of a magnetic fusion reactor. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the development of predictive models. Diagnostic advances are urgently needed to better characterize the plasma edge and wall and improve our predictive capability.
机译:issues问题将在下一步燃烧-托卡马克的性能和操作中发挥中心作用,而与associated有关的安全方面将引起公众的广泛关注。 fuel燃料已成功用于托卡马克聚变试验堆(TFTR)和联合欧洲环面(JET),分别产生10兆瓦和16兆瓦的聚变功率。这次经验与重点实验室研究一起,阐明了挑战。占空比和存储能量的数量级增加将比实现高聚变增益和点火所需的等离子体性能增加大得多。面对等离子体的部件的腐蚀会随着脉冲长度的增加而扩大,从在现有机器上几乎无法测量到厘米级。具有面向碳等离子体的组件的磁聚变能(MFE)设备将与被腐蚀的碳共沉积,从而积累and,这将严重限制等离子体的运行。我们报告了一种新颖的基于激光的方法,可从托卡马克中的碳等离子组件中去除共沉积的tri。诸如钨之类的替代材料的使用寿命因中断过程中的熔体层损失而具有很大的不确定性。粉尘和薄片的生产将需要仔细的监控和最小化,control的库存的控制和核算将是关键问题。相关的等离子体材料相互作用已得到全面综述。下一步实验的操作将有助于解决磁聚反应堆设计中的关键tri问题。惯性聚变能源(IFE)中的许多the问题与MFE相似,但某些问题(例如与目标工厂相关的问题)是IFE特有的。由于缺乏极性对称性以及等离子体与壁之间的非线性反馈,托卡马克中的等离子体边缘区域比核心具有更大的复杂性。稀疏的诊断范围和较低的专用实验运行时间阻碍了预测模型的开发。迫切需要诊断方面的进展,以更好地表征血浆边缘和壁并改善我们的预测能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号