【24h】

TRITIUM ISSUES IN NEXT STEP DEVICES

机译:下一步设备中的TRITIUM问题

获取原文

摘要

Tritium issues will play a central role in the performance and operation of next-step deuterium-tritium (DT) burning tokamaks and the safety aspects associated with tritium will attract intense public scrutiny. Tritium fuel has been successfully used in the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET) producing 10 and 16 MW of fusion power respectively. This experience together with focussed laboratory studies, has illuminated the challenges. The orders-of-magnitude increase in duty cycle and stored energy will be a much larger change than the increase in plasma performance necessary to achieve high fusion gain and ignition. Erosion of plasma facing components will scale up with the pulse length from being barely measurable on existing machines to cm-scale. Magnetic Fusion Energy (MFE) devices with carbon plasma facing components will accumulate tritium by co-deposition with the eroded carbon and this will strongly constrain plasma operations. We report on a novel laser-based method to remove codeposited tritium from carbon plasma facing components in tokamaks. The operational lifetime of alternative materials such as tungsten has significant uncertainties due to melt layer loss during disruptions. Production of dust and flakes will need careful monitoring and minimization, and control and accountancy of the tritium inventory will be critical issues. The relevant plasma material interactions are comprehensively reviewed in. Operation of next step experiments will help resolve key tritium issues in the design of a magnetic fusion reactor. Many of the tritium issues in Inertial Fusion Energy (IFE) are similar to MFE, but some, for example those associated with the target factory, are unique to IFE. The plasma-edge region in a tokamak has greater complexity than the core due to lack of poloidal symmetry and nonlinear feedback between the plasma and wall. Sparse diagnostic coverage and low dedicated experimental run time has hampered the development of predictive models. Diagnostic advances are urgently needed to better characterize the plasma edge and wall and improve our predictive capability.
机译:TRITIUM问题将在下一步氘 - 氚(DT)燃烧的TOKAMAKS的性能和运营中发挥着核心作用,以及与氚相关的安全方面将吸引强烈的公众审查。在Tokamak融合测试反应器(TFTR)和欧洲联合圆环(喷射)中分别成功地使用了氚燃料,分别产生10和16兆瓦的融合功率。这种经历与专注的实验室研究一起照亮了挑战。占空比和储存能量的数量级增加将比达到高融合增益和点火所需的等离子体性能的增加更大。等离子体面向组件的侵蚀将脉冲长度从现有机器上勉强可测量到CM级。具有碳等离子体面向部件的磁性融合能量(MFE)器件将通过与侵蚀的碳共沉积积累氚,这将强调等离子体操作。我们报告了一种新的基于激光的方法,从托卡马克斯中从碳等离子体面向碳等离子体中取出密码氚。替代材料的操作寿命,例如钨的替代材料具有显着的不确定性,因为在中断期间熔体层损耗。灰尘和薄片的生产需要仔细的监测和最小化,氚库存的控制和会计将是关键问题。综合审查了相关的等离子体材料相互作用。下一步实验的操作将有助于解决磁性熔融反应堆的设计中的关键氚问题。惯性融合能量(IFE)中的许多氚问题类似于MFE,但是,一些与目标工厂相关的问题,对于IFE而言是独一无二的。由于缺乏等离子体和墙壁之间的针状反应性对称和非线性反馈,托卡马克中的等离子体边缘区域具有比芯更大的复杂性。稀疏诊断覆盖率和低专用实验运行时间阻碍了预测模型的发展。迫切需要诊断进步,以更好地表征等离子体边缘和墙壁,提高我们的预测能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号