首页> 外文会议>Australasian fluid mechanics conference >Cavitation Inception and Bubble Dynamics in Vortical Flows Steven
【24h】

Cavitation Inception and Bubble Dynamics in Vortical Flows Steven

机译:涡流中的空化开始和气泡动力学

获取原文

摘要

The liquid in the core of a vortex can be at a significantly lower pressure than the surrounding fluid, and possibly in tension. Small bubbles (nuclei) exposed to this tension can rapidly enlarge to fill the radial extent of the vortex core and then grow along the vortex axis. Such vortex cavitation can readily occur in the shed vortices of lifting surfaces or in turbulent shear flow such as jets and wakes. Incipient and developed vortex cavitation bubbles can exhibit complex dynamics as the bubble interacts with the surrounding flow. As the bubble changes volume within the vortex core, the vorticity distribution of the surrounding flow is modified, which then changes the pressures at the bubble interface. This coupling can produce volume oscillations with a period of the order of the vortex time scale, τ_v = 2πr_c/u_(θmax), where r_c is the vortex core radius and u_(θmax) is its maximum tangential velocity of the vortex. However, the volume oscillation amplitude and frequency are quite sensitive to variations in the vortex properties, the rate and magnitude of the local pressure core pressure, and the nuclei's critical pressure. The axial and radial growth of elongated cavitation bubbles is also strongly coupled, especially near the axial extents of the bubble. Such complex growth, oscillation, and collapse of vortex cavitation bubbles can lead to both broadband and tonal sound emissions. Moreover, it is possible to understand the formation and dynamics of vortex cavitation as the result of vortex dynamics, vortex breakdown, and vortex-vortex interactions. And, finally, it may be possible to mitigate the inception of vortex cavitation on lifting surfaces through both passive and active means.
机译:涡流核心中的液体压力可能明显低于周围的流体,并且可能处于张力状态。暴露于这种张力的小气泡(核)可以迅速扩大以填充旋涡核的径向范围,然后沿着旋涡轴生长。这种涡流空化很容易发生在升力面的脱落涡流中或湍流剪切流中,例如射流和尾流。当气泡与周围流相互作用时,初生和发达的涡流空化气泡会表现出复杂的动力学。当气泡改变涡流核心内的体积时,周围流的涡度分布会发生变化,从而改变气泡界面处的压力。这种耦合可以产生体积振动,其周期约为旋涡时间标度,τ_v=2πr_c/ u_(θmax),其中r_c是旋涡芯半径,u_(θmax)是旋涡的最大切线速度。但是,体积振荡幅度和频率对涡旋特性,局部压力核心压力的速率和大小以及原子核的临界压力的变化非常敏感。细长空化气泡的轴向和径向生长也紧密耦合,尤其是在气泡的轴向范围附近。涡流空化气泡的这种复杂的增长,振荡和破裂会导致宽带和音调的声音发射。此外,有可能理解涡旋空化的形成和动力学,作为涡旋动力学,涡旋分解和涡旋-涡旋相互作用的结果。最后,有可能通过被动和主动方式减轻起重表面上的涡流空化现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号