首页> 外文会议>International astronautical congress >SPACECRAFT ATTITUDE AND RATE DETERMINATION USPNG NUMERICAL GYROS
【24h】

SPACECRAFT ATTITUDE AND RATE DETERMINATION USPNG NUMERICAL GYROS

机译:航天飞机的姿态和速率确定USPNG数值陀螺

获取原文

摘要

To meet the 0.012 deg, 3-sigma, per axis, absolute bus attitude knowledge requirement flown-down from Remote Sensing Instrument (RSI) for meeting its geo-location accuracy, the micro-Advanced Stellar Compass (mu-ASC) consisting of three Camera Head Units (CHUs) along with four single-axis fiber-optics gyros is mounted on a stable optical bench common to the RSI structure. The mu-ASC is a highly advanced and fully autonomous star tracker produced by the Measurement & Instrument System (MIS) Section of the 0rsted Department of the Technical University of Denmark (DTU). The gyroscopes considered in this mission are the fiber-optics rate sensors, mu-FORS3UC, manufactured by Litef, a Northrop Grumman branch in Germany. The mu-FORS3UC is originally designed to meet the requirements of a wide range of air, land, and sea applications, and was later certified by NSPO for space applications after a series of environmental tests. The primary spacecraft attitude and rate determination for the spacecraft Attitude and Orbit Control System (AOCS) will be provided by a gyro-stellar attitude determination system, which utilizes attitude data provided by three CHUs and rate data provided by the four single-axis fiber-optics gyros. To account for the possibility of more than one gyro failure due to lack of space-flight heritage, a gyro-less attitude and rate determination algorithm is developed as a back-up for the AOCS design. This paper describes the detailed development of a gyro-less attitude and rate determination algorithm which uses the computed gyro data (numerical gyro data) instead of physical gyro data as in a typical gyro-stellar attitude determination system. The numerical gyro data are computed using the assumed spacecraft dynamics (or Euler equations of motion). By perturbing the spacecraft kinematic equations, the linearized attitude error equations are obtained. Similarly, by perturbing the spacecraft dynamic equations, the linearized rate error equations are obtained. With the obtained linearized attitude error equations and the linearized rate error equations, a reduced-order (6-states) Extended Kalman Filter (EKF) providing spacecraft attitude and rate estimates is then implemented in the algorithm. The developed gyro-less attitude and rate determination algorithm is incorporated and tested in a 6-DOF nonlinear, high-fidelity simulation model to assess its performance. Its performance estimates and sensitivities to spacecraft inertia tensor uncertainties, reaction wheel momentum uncertainties, and torque uncertainties produced by torque-rods during normal operations will be presented in the paper.
机译:微型先进的恒星罗盘(mu-ASC)为满足每轴0.012度,3σ的要求,从遥感仪(RSI)降落下来的绝对总线姿态知识要求,以实现其地理位置精度。摄像头单元(CHU)与四个单轴光纤陀螺仪一起安装在RSI结构共有的稳定光学平台上。 mu-ASC是由丹麦技术大学(DTU)的0rsted系测量与仪器系统(MIS)部门生产的一种高度先进且完全自主的恒星跟踪仪。在此任务中考虑的陀螺仪是光纤速度传感器mu-FORS3UC,由德国诺斯罗普·格鲁曼公司的Litef生产。 mu-FORS3UC最初旨在满足各种空中,陆地和海洋应用的要求,后来经过一系列环境测试,通过了NSPO的太空应用认证。航天器姿态和轨道控制系统(AOCS)的主要航天器姿态和速率确定将由陀螺星系姿态确定系统提供,该系统利用三个CHU提供的姿态数据和四个单轴光纤提供的速率数据。光学陀螺仪。为了解决由于缺少航空航天遗产而导致多个陀螺仪失效的可能性,开发了一种无陀螺仪姿态和速率确定算法作为AOCS设计的备用。本文介绍了一种无陀螺姿态和速率确定算法的详细开发方法,该算法使用计算的陀螺数据(数字陀螺数据)代替了典型陀螺-星体姿态确定系统中的物理陀螺数据。使用假定的航天器动力学(或运动的欧拉方程)计算陀螺仪的数值。通过扰动航天器的运动学方程,获得了线性化的姿态误差方程。类似地,通过扰动航天器动力学方程,可以获得线性化的速率误差方程。利用获得的线性姿态误差方程和线性率误差方程,然后在算法中实现提供航天器姿态和率估计的降阶(六态)扩展卡尔曼滤波器(EKF)。所开发的无陀螺仪姿态和速率确定算法已纳入并在6自由度非线性高保真仿真模型中进行了测试,以评估其性能。本文将介绍其性能估算以及对航天器惯性张量不确定性,反作用轮动量不确定性以及在正常运行期间由扭矩杆产生的扭矩不确定性的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号