首页> 外文会议>Joint IEEE International Conference on Development and Learning and Epigenetic Robotics >A Novel Pneumatic Artificial Muscle -driven Robot for Multi-joint Progressive Rehabilitation
【24h】

A Novel Pneumatic Artificial Muscle -driven Robot for Multi-joint Progressive Rehabilitation

机译:用于多关节渐进康复的新型气动人工肌肉驱动机器人

获取原文

摘要

Due to the bio-mechanical characteristics and inherent compliance, pneumatic artificial muscles have been widely applied in rehabilitation robotic field. However, the most existing multi-joint rehabilitation robots have the disadvantages of bulky facilities, low utilization rate and high cost; while some rehabilitation robots with simple mechanism are only suitable for a specific joint rehabilitation. This paper presents a single degree of freedom rehabilitation robot with progressive adjustation ability, which can provide suitable assistance for different patient's injury site. By introducing the joint motion radius element, the robot's mechanical parameters, fixed position, drive unit's overhanging state can be adjusted to provide the required range of motion and assistance torque to adapt to each recovery period during the whole rehabilitation process. After the kinematics and dynamics model of the joint mechanism is established, a modified sliding mode control method based on RBF neural network is utilized to compensate the system disturbance and guarantee the robust stability of the control. The experimental results show that the adopted algorithm achieved better control performance than the traditional sliding mode control method, which is suitable for the rehabilitation training of patients during the entire progressive rehabilitation periods.
机译:由于其生物力学特性和固有的柔韧性,气动人工肌肉已广泛应用于康复机器人领域。但是,现有的多关节康复机器人具有设备笨重,利用率低,成本高的缺点。而一些结构简单的康复机器人仅适用于特定的关节康复。本文提出一种具有渐进调节能力的单自由度康复机器人,可以为不同患者的受伤部位提供合适的帮助。通过引入关节运动半径元素,可以调整机器人的机械参数,固定位置,驱动单元的伸出状态,以提供所需的运动范围和辅助扭矩,以适应整个康复过程中的每个恢复周期。建立了关节机构的运动学和动力学模型后,利用一种基于RBF神经网络的改进的滑模控制方法来补偿系统扰动并保证控制的鲁棒稳定性。实验结果表明,与传统的滑模控制方法相比,所采用的算法具有更好的控制性能,适用于患者在整个进行性康复期间的康复训练。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号