首页> 外文会议>SPIE Medical Imaging Conference >Rapid 3D Bioprinting from Medical Images-An Application to Bone Scaffolding
【24h】

Rapid 3D Bioprinting from Medical Images-An Application to Bone Scaffolding

机译:医学图像的快速3D生物打印-在骨骼支架中的应用

获取原文

摘要

Bioprinting of tissue has its applications throughout medicine. Recent advances in medical imaging allows the generation of 3-dimensional models that can then be 3D printed. However, the conventional method of converting medical images to 3D printable G-Code instructions has several limitations, namely significant processing time for large, high resolution images, and the loss of microstructural surface information from surface resolution and subsequent reslicing. We have overcome these issues by creating a JAVA program that skips the intermediate triangularization and reslicing steps and directly converts binary dicom images into G-Code.In this study, we tested the two methods of G-Code generation on the application of synthetic bone graft scaffold generation. We imaged human cadaveric proximal femurs at an isotropic resolution of 0.03mm using a high resolution peripheral quantitative computed tomography (HR-pQCT) scanner. These images, of the Digital Imaging and Communications in Medicine (DICOM) format, were then processed through two methods. In each method, slices and regions of print were selected, filtered to generate a smoothed image, and thresholded. In the conventional method, these processed images are converted to the STereoLithography (STL) format and then resliced to generate G-Code. In the new, direct method, these processed images are run through our JAVA program and directly converted to G-Code. File size, processing time, and print time were measured for each.We found that this new method produced a significant reduction in G-Code file size as well as processing time (92.23% reduction). This allows for more rapid 3D printing from medical images.
机译:组织的生物打印在整个医学中都有其应用。医学成像的最新进展允许生成3D模型,然后可以对其进行3D打印。但是,将医学图像转换为3D可打印G代码指令的常规方法有几个局限性,即对大尺寸,高分辨率图像的处理时间长,以及由于表面分辨率和后续切片而导致的微结构表面信息的丢失。我们通过创建一个JAVA程序克服了这些问题,该程序跳过了中间的三角化和切片步骤,并将二进制dicom图像直接转换为G-Code。在这项研究中,我们测试了在合成骨移植物上的两种G-Code生成方法支架的产生。我们使用高分辨率外围定量计算机断层扫描(HR-pQCT)扫描仪以0.03mm的各向同性分辨率对人体尸体近端股骨成像。然后,通过两种方法处理这些数字图像和医学数字通信(DICOM)格式的图像。在每种方法中,选择打印的切片和区域,进行过滤以生成平滑的图像,并设定阈值。在传统方法中,将这些处理后的图像转换为立体光刻(STL)格式,然后进行切片以生成G代码。在新的直接方法中,这些经过处理的图像通过我们的JAVA程序运行,并直接转换为G代码。分别测量了文件大小,处理时间和打印时间。我们发现,这种新方法大大减少了G-Code文件的大小和处理时间(减少了92.23%)。这允许从医学图像更快速地进行3D打印。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号