首页> 外文会议>Three-Dimensional and multidimensional microscopy: Image acquisition and processing >Fast IR imaging with sub-wavelength resolution using a transient near-field probe (tipless near-field microscopy)
【24h】

Fast IR imaging with sub-wavelength resolution using a transient near-field probe (tipless near-field microscopy)

机译:使用瞬态近场探针(Tipless近场显微镜)快速IR成像与子波长分辨率

获取原文

摘要

Microscopy based on the mid-infrared part of the spectrum provides an approach to imaging with a chemically selective contrast mechanism. However, the long wavelength of the mid-IR radiation diffraction limits the spatial resolution to no better than a few microns in conventional IR microscopy. (In practice, commercial IR microscopes rarely do as well as 10 microns). This resolution prevents IR spectroscopy of single sub-cellular or even cellular features routinely observable with conventional visible light microscopes. In this paper we present a technique using conventional IR optics and no near- field tips which enables IR imaging with the resolution of a visible microscope. Photo-induced reflectivity generated by ps pulses of visible light incident on the surface of semiconductor is used to create a transient mirror with dimensions determined by the spot size of the visible light. The IR light scattered by such subwavelength-size mirror is collected after propagating through the sample. As the sample is located on the semiconductor substrate, no near-field distance control is required, and the image can be taken at the speed of a typical laser scanning microscope. And since the near-field probe is generated remotely - using light - the sample to be imaged can be covered by, or encased in, a transparent liquid or solid. The resolution of such an IR microscope is determined by the dimensions of the transient mirror, i.e. by the spot size of the visible light and its penetration depth into the substrate. To prevent resolution degradation due to diffusion of the photo-excited carriers in the substrate, the probe (IR) pulse duration should not exceed a few tens of picoseconds. Preliminary results, prospects and limitations are discussed.
机译:基于光谱中红外部分的显微镜提供了一种用化学选择性对比机构进行成像的方法。然而,中红外辐射衍射的长波长限制了常规IR显微镜中的空间分辨率不优于几微米。 (在实践中,商业红外线显微镜很少能为10微米)。该分辨率可防止单个子细胞的IR光谱或甚至蜂窝特征常规可观察到的传统可见光显微镜。在本文中,我们介绍了一种技术,使用传统的IR光学器件,没有近场提示,其使IR成像与可见显微镜的分辨率进行成像。由入射在半导体表面上的可见光的PS脉冲产生的光引起的反射率用于产生具有由可见光的光斑尺寸确定的尺寸的瞬态镜。在通过样品繁殖之后收集由这种亚波长尺寸镜散射的IR光。当样品位于半导体衬底上时,不需要近场距离控制,并且可以以典型的激光扫描显微镜的速度拍摄图像。并且由于远程产生近场探针 - 使用光 - 待成像的样品可以被透明液体或固体覆盖或被包裹。这种IR显微镜的分辨率由瞬态镜的尺寸确定,即通过可见光的光斑尺寸及其穿透深度进入基板。为了防止由于衬底中的光激载体的扩散而导致的分辨率降低,探针(IR)脉冲持续时间不应超过几十几十秒的剖面。讨论了初步结果,前景和局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号