首页> 外文会议>Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VI >Fast IR imaging with sub-wavelength resolution using a transient near-field probe (tipless near-field microscopy)
【24h】

Fast IR imaging with sub-wavelength resolution using a transient near-field probe (tipless near-field microscopy)

机译:使用瞬态近场探头(无尖近场显微镜)以亚波长分辨率进行快速红外成像

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Microscopy based on the mid-infrared part of the spectrum provides an approach to imaging with a chemically selective contrast mechanism. However, the long wavelength of the mid-IR radiation diffraction limits the spatial resolution to no better than a few microns in conventional IR microscopy. (In practice, commercial IR microscopes rarely do as well as 10 microns). This resolution prevents IR spectroscopy of single sub-cellular or even cellular features routinely observable with conventional visible light microscopes. In this paper we present a technique using conventional IR optics and no near- field tips which enables IR imaging with the resolution of a visible microscope. Photo-induced reflectivity generated by ps pulses of visible light incident on the surface of semiconductor is used to create a transient mirror with dimensions determined by the spot size of the visible light. The IR light scattered by such subwavelength-size mirror is collected after propagating through the sample. As the sample is located on the semiconductor substrate, no near-field distance control is required, and the image can be taken at the speed of a typical laser scanning microscope. And since the near-field probe is generated remotely - using light - the sample to be imaged can be covered by, or encased in, a transparent liquid or solid. The resolution of such an IR microscope is determined by the dimensions of the transient mirror, i.e. by the spot size of the visible light and its penetration depth into the substrate. To prevent resolution degradation due to diffusion of the photo-excited carriers in the substrate, the probe (IR) pulse duration should not exceed a few tens of picoseconds. Preliminary results, prospects and limitations are discussed. !21
机译:摘要:基于光谱中红外部分的显微镜提供了一种利用化学选择性对比机制进行成像的方法。但是,中红外辐射衍射的长波长将空间分辨率限制在不超过传统红外显微镜的几微米。 (实际上,商用红外显微镜很少能达到10微米)。此分辨率可防止使用常规可见光显微镜常规观察到的单个亚细胞甚至细胞特征的红外光谱。在本文中,我们介绍了一种使用常规红外光学器件且没有近场尖端的技术,该技术能够以可见显微镜的分辨率进行红外成像。由入射到半导体表面的ps可见光脉冲产生的光感应反射率可用于创建瞬态镜,其尺寸由可见光的光斑大小决定。由这种亚波长尺寸的反射镜散射的红外光在传播通过样品后收集。由于样品位于半导体基板上,因此不需要近场距离控制,并且可以以典型的激光扫描显微镜的速度拍摄图像。而且,由于近场探针是使用光远程生成的,因此要成像的样本可以被透明的液体或固体覆盖或包裹在其中。这种IR显微镜的分辨率取决于瞬态反射镜的尺寸,即取决于可见光的光斑尺寸及其在基底中的穿透深度。为了防止由于光激发载流子在基板中的扩散而导致分辨率下降,探针(IR)脉冲持续时间不应超过几十皮秒。讨论了初步结果,前景和局限性。 !21

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号