首页> 外文会议>International Conference on Manufacturing Science and Technology >Impact of Different Dose and Angle in HALO Structure for 45nm NMOS Device
【24h】

Impact of Different Dose and Angle in HALO Structure for 45nm NMOS Device

机译:45nm NMOS装置光环结构中不同剂量和角度的影响

获取原文

摘要

In this paper, we investigates the different dose and tilt HALO implant step in order to characterize the 45nm NMOS device. Besides HALO, the other two process parameters are oxide growth temperature and source/drain (S/D) implant dose. The settings of process parameters were determined by using Taguchi experimental design method. This work was done using TCAD simulator, consisting of a process simulator, ATHENA and device simulator, ATLAS. These two simulators were combined with Taguchi method to aid in design and optimizer the process parameters. Threshold voltage (VTH) results were used as the evaluation variable. The results were then subjected to the Taguchi method to determine the optimal process parameters and to produce predicted values. In this research, oxide growth temperature was the major factor affecting the threshold voltage (69%), whereas halo implant tilt was the second ranking factor (20%). The percent effect on Signal-to-Noice (S/N) ratio of halo implant dose and S/D implant dose are 6% and 5% respectively. As conclusions, oxide growth temperature and halo implant tilt were identified as the process parameters that have strongest effect on the response characteristics. While S/D implant dose was identified as an adjustment factor to get threshold voltage for NMOS device closer to the nominal value (0.150V) at t_(ox)= 1.1nm.
机译:在本文中,我们研究了不同的剂量和倾斜光环植入步骤,以表征45nm NMOS器件。除了卤素之外,其他两个工艺参数是氧化物生长温度和源/漏极(S / D)植入剂剂量。通过使用Taguchi实验设计方法确定过程参数的设置。这项工作是使用TCAD模拟器完成的,包括流程模拟器,雅典娜和设备模拟器,图册。这两种模拟器与Taguchi方法相结合,帮助设计和优化过程参数。阈值电压(Vth)结果用作评估变量。然后对结果进行Taguchi方法以确定最佳过程参数并产生预测值。在本研究中,氧化物生长温度是影响阈值电压(69%)的主要因素,而晕圈植入倾斜是第二排名因子(20%)。卤素植入剂剂量和S / D植入剂量的信号对诺伊兹(S / N)比的效果分别为6%和5%。作为结论,鉴定氧化物生长温度和卤素植入倾斜作为对响应特性产生最强的工艺参数。虽然S / D植入剂剂量被鉴定为调节因子,以使NMOS器件的阈值电压更靠近T_(OX)= 1.1nm的标称值(0.150V)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号