首页> 外文会议>International conference on communications and cyber physical engineering >Characterization and System Identification of XY Flexural Mechanism sing Double Parallelogram Manipulator for High Precision Scanning
【24h】

Characterization and System Identification of XY Flexural Mechanism sing Double Parallelogram Manipulator for High Precision Scanning

机译:XY弯曲机制的特征与系统识别Sing双平行四边形机械手高精度扫描

获取原文

摘要

This article represents modeling of double parallelogram flexural manipulator derived from basic classical mechanics theory. Fourth order vibration wave equation is used for mathematical modeling and its performance is determined for step input and sinusoidal forced input. Static characterization of DFM is carried out to determine stiffness and force deflection characteristics over the entire motion range and dynamic characteristics is carried out using Transient response and Frequency response. Transient response is determined using step input to DFM which gives system properties such as damping, rise time and settling time. These parameters are then compared with theoretical model presented previously. Frequency response of DFM system gives characteristics of system with different frequency inputs which is used for experimental modeling of DFM device. Here, Voice Coil Motor is used as Actuator and optical encoder is used for positioning sensing of motion stage. It is noted that theoretical model is having 5% accuracy with experimental results. To achieve better position and accuracy, PID and LQR (Linear Quadratic Regulator) implementation was carried out on experimental model. PID gains are optimally tuned by using Ziegler Nichols approach. PID control is implemented experimentally using dSPACE DS1104 microcontroller and Control Desk software. Experimentally, it is observed that positioning accuracy is less than 5 μm. Further multiple DFM blocks are arranged for developing XY flexural mechanism and static characterization was carried out on it. The comparison of experimental and FEA results for X-direction and Y-direction is presented at end of paper.
机译:本文代表了源自基本经典力学理论的双平行四边形弯曲机械图的建模。第四阶振动波方程用于数学建模,并确定步进输入和正弦强制输入的性能。执行DFM的静态表征以确定整个运动范围内的刚度和力偏转特性,并且使用瞬态响应和频率响应进行动态特性。使用步骤输入到DFM确定瞬态响应,其为系统属性提供阻尼,上升时间和稳定时间。然后将这些参数与先前呈现的理论模型进行比较。 DFM系统的频率响应提供了具有不同频率输入的系统特性,用于DFM器件的实验建模。这里,音圈电机用作致动器,光学编码器用于定位运动级的定位感。有人指出,理论模型具有5%的实验结果精度。为了实现更好的位置和准确性,PID和LQR(线性二次调节器)实现在实验模型上进行。使用Ziegler Nichols方法,PID增益最佳地调整。使用DSPACE DS1104微控制器和控制台软件通过实验实现PID控制。实验,观察到定位精度小于5μm。此外,提供了多个DFM块以开发XY弯曲机构,并在其上进行静态表征。 X方向和Y方向的实验和FEA的比较在纸末端提出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号