首页> 外文会议>Optical Materials in Defence Systems Technology >Glass-bonded quasi-phase matched gallium arsenide crystals for non-linear wavelength conversion into the mid-infrared
【24h】

Glass-bonded quasi-phase matched gallium arsenide crystals for non-linear wavelength conversion into the mid-infrared

机译:玻璃键合的准相匹配砷化镓晶体,用于将波长非线性转换为中红外

获取原文
获取原文并翻译 | 示例

摘要

Non-linear optical (NLO) devices for wavelength conversion of laser sources into the mid-infrared waveband (such as optical parametric oscillators) require the provision of non-linear materials. Quasi-phase matched (QPM) gallium arsenide crystals represent a promising alternative NLO material (high non-linear coefficient, low-optical loss) to conventional birefringent chalcopyrite crystals for use in the mid to far-infrared. To date, several approaches have been investigated to produce QPM GaAs crystals, including diffusion and fusion wafer bonding, orientation patterned growth and total internal reflection techniques. However, these require ultra-clean processing environments, relatively high bonding temperatures or are limited in crystal aperture. We present an approach to developing QPM GaAs crystals based on bonding using an index-matched chalcogenide glass. The glass-bonding (GBGaAs) technique forms low-loss bonds at moderate temperature and has several advantages over existing approaches. In particular, the technique is tolerant to GaAs wafer thickness variations and surface defects, and has the potential to produce large-aperture crystals. The glass-bonding process involves coating individual GaAs wafers with a thin-film of glass, deposited by RF sputtering, and then bonding assembled stacks of coated wafers in a vacuum oven under carefully controlled temperature and pressure conditions to form a single composite structure. To date, GBGaAs crystals consisting of up to 40 layers have been produced and optical losses per layer of less than 0.1% have been achieved. An outline of the production process for manufacturing GBGaAs crystals will be described together with details of optical assessment procedures. The impact of glass purity, sputtering conditions and pressing conditions on optical absorption levels will be reported. Techniques to minimise optical loss in fabricated crystals will be discussed.
机译:用于将激光源波长转换为中红外波段的非线性光学(NLO)设备(例如光学参量振荡器)需要提供非线性材料。准相匹配(QPM)砷化镓晶体代表了一种有希望的替代NLO材料(高非线性系数,低光学损耗),可替代传统的双折射黄铜矿晶体用于中远红外。迄今为止,已经研究了几种生产QPM GaAs晶体的方法,包括扩散和熔融晶圆键合,取向图案生长和全内反射技术。但是,这些要求超净的加工环境,较高的键合温度或晶体孔径受到限制。我们提出了一种使用折射率匹配硫属化物玻璃基于键合的方法来开发QPM GaAs晶体的方法。玻璃键合(GBGaAs)技术在中等温度下形成低损耗键合,与现有方法相比具有多个优点。尤其是,该技术可以容忍GaAs晶圆厚度的变化和表面缺陷,并具有产生大孔径晶体的潜力。玻璃键合工艺包括用玻璃薄膜涂覆单个GaAs晶圆,然后通过RF溅射沉积,然后在真空烘箱中,在仔细控制的温度和压力条件下,将已组装的晶圆堆叠堆叠在一起,以形成单个复合结构。迄今为止,已经生产了由多达40层组成的GBGaAs晶体,并且每层的光学损耗小于0.1%。将描述制造GBGaAs晶体的生产过程的概述以及光学评估程序的细节。将报道玻璃纯度,溅射条件和压制条件对光吸收水平的影响。将讨论使制造的晶体中的光损失最小化的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号