首页> 外文学位 >Type-II InAs/GaSb superlattice LEDs: Applications for infrared scene projector systems.
【24h】

Type-II InAs/GaSb superlattice LEDs: Applications for infrared scene projector systems.

机译:II型InAs / GaSb超晶格LED:红外场景投影仪系统的应用。

获取原文
获取原文并翻译 | 示例

摘要

Optoelectronic devices operating in the mid-wave (3-5 mum) and long-wave (8-12 mum) infrared (IR) regions of the electromagnetic spectrum are of a great interest for academic and industrial applications. Due to the lack of atmospheric absorption, devices operating within these spectral bands are particularly useful for spectroscopy, imaging, and dynamic scene projection. Advanced IR imaging systems have created an intense need for laboratory-based infrared scene projector (IRSP) systems which can be used for accurate simulation of real-world phenomena occurring in the IR. These IRSP systems allow for reliable, reproducible, safe, and cost-effective calibration of IR detector arrays. The current state-of-the-art technology utilized for the emitter source of IRSP systems is thermal pixel arrays (TPAs) which are based on thin film resistor technology. Thermal pixel array technology has fundamental limitations related to response time and maximum simulated apparent temperature, making them unsuitable for emulation of very hot (> 700 K) and rapidly evolving scenes.;Additionally, there exists a need for dual wavelength emitter arrays for IRSP systems dedicated to calibration of dual wavelength detector arrays. This need is currently met by combining the spectral output from two separate IRSP systems. This configuration requires precise alignment of the output from both systems and results in the maximum radiance being limited to approximately half that of the capability of a given emitter array due to the optics used to combine the outputs.;The high switching speed inherent to IR light-emitting diodes (LEDs) and the potential for high power output makes them an appealing candidate to replace the thermal pixel arrays used for IRSP systems. To this end, research has been carried out to develop and improve the device performance of IR LEDs based on InAs/GaSb type-II superlattices (T2SLs). A common method employed to achieve high brightness from LEDs is to incorporate multiple active regions, coupled by tunnel junctions. Tunnel junctions must provide adequate barriers to prevent carrier leakage, while at the same time remain low in tunneling resistance to prevent unwanted heating. The performance of two tunnel junction designs are compared in otherwise identical four stage InAs/GaSb superlattice LED (SLED) devices for application in IRSP systems.;This research culminated in the development of a 48 mum pitch, 512 x 512 individually addressable mid-wave IR LED array based on a sixteen stage, InAs/GaSb T2SL device design. This array was hybridized to a read-in integrated circuit and exhibited a pixel yield greater than 95 %. Projections based on single element emitter results predict this array will be able to achieve a peak apparent temperature of 1350 K within the entire 3-5 mum band. These results demonstrate the feasibility of emitter arrays intended for IRSP systems based on InAs/GaSb SLED devices.;Additionally, a dual wavelength 48 mum pitch, 8 x 8 emitter array based on InAs/GaSb T2SL LEDs was developed and demonstrated. This design incorporates two separate, 16 stage InAs/GaSb SL active regions with varying InAs layer thicknesses built into a single vertical heterostructure. The device architecture is a three terminal device allowing for independent control of the intensity of each emission region. Each emitter region creates a contiguous pixel, capable of being planarized and mated to drive electronics.
机译:在电磁频谱的中波(3-5 mum)和长波(8-12 mum)红外(IR)区域中操作的光电设备引起了学术和工业应用的极大兴趣。由于缺乏大气吸收,在这些光谱带内运行的设备对于光谱学,成像和动态场景投影特别有用。先进的红外成像系统已经迫切需要基于实验室的红外场景投影仪(IRSP)系统,该系统可用于精确模拟IR中发生的真实现象。这些IRSP系统允许对IR检测器阵列进行可靠,可重复,安全且经济高效的校准。用于IRSP系统的发射器源的当前最先进的技术是基于薄膜电阻器技术的热像素阵列(TPA)。热像素阵列技术具有与响应时间和最大模拟视在温度相关的基本限制,使其不适合模拟非常热(> 700 K)和快速变化的场景。;此外,还需要用于IRSP系统的双波长发射器阵列专门用于校准双波长检测器阵列。当前,通过组合来自两个单独的IRSP系统的光谱输出来满足此需求。这种配置要求两个系统的输出都精确对准,并且由于用于组合输出的光学器件,导致最大辐射度被限制在给定发射器阵列能力的一半左右; IR光固有的高开关速度发光二极管(LED)和高功率输出的潜力使其成为取代IRSP系统所用热像素阵列的诱人候选者。为此,已经进行了研究以开发和改善基于InAs / GaSb II型超晶格(T2SL)的IR LED的器件性能。从LED实现高亮度的常用方法是合并多个有源区域,并通过隧道结耦合。隧道结必须提供足够的阻挡层以防止载流子泄漏,同时隧道电阻应保持较低,以防止不必要的发热。在用于IRSP系统的其他相同的四阶段InAs / GaSb超晶格LED(SLED)器件中比较了两个隧道结设计的性能。该研究最终开发了48 m间距,512 x 512可单独寻址的中波基于InAs / GaSb T2SL器件设计的十六级IR LED阵列。该阵列与读入的集成电路杂交,并显示出大于95%的像素产率。基于单元素发射器结果的投影预测该阵列将能够在整个3-5微米波段内达到1350 K的峰值视在温度。这些结果证明了用于基于InAs / GaSb SLED器件的IRSP系统的发射器阵列的可行性。此外,开发并演示了基于InAs / GaSb T2SL LED的双波长48微米间距,8 x 8发射器阵列。该设计结合了两个独立的16级InAs / GaSb SL有源区,并在单个垂直异质结构中内置了变化的InAs层厚度。该设备架构是三端设备,允许独立控制每个发射区域的强度。每个发射极区域创建一个连续的像素,该像素可以被平坦化并匹配以驱动电子设备。

著录项

  • 作者

    Norton, Dennis Thomas, Jr.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Physics Condensed Matter.;Physics Optics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号