首页> 外文学位 >Sensing and control electronics design for capacitive CMOS-MEMS inertial sensors.
【24h】

Sensing and control electronics design for capacitive CMOS-MEMS inertial sensors.

机译:电容式CMOS-MEMS惯性传感器的传感和控制电子设计。

获取原文
获取原文并翻译 | 示例

摘要

The deep reactive-ion-etching CMOS-MEMS techniques provide a low-cost, small-size, and high-performance inertial sensing solution. However, the design of the read-out electronics for the CMOS-MEMS inertial sensors, including accelerometers and gyroscopes, is challenging because of their low mechanical sensitivity and small capacitance. In this thesis work, new low-power low-noise circuits architectures for CMOS-MEMS inertial sensors are proposed and are verified experimentally.;For accelerometers, an improved dual-chopper amplifier (DCA), which modulates/demodulates the signal from MEMS structures twice at high frequency and intermediate frequency and have the overall gain distributed properly in two amplification stages, is applied to realize low noise and low power consumption simultaneously. A three-axis accelerometer has been fabricated with the DCA-based electronics and has achieved 40mug/✓Hz for lateral axis, and 130mug/✓Hz for vertical axis, respectively, and 1mW/axis power consumption.;For gyroscopes, a novel differential difference amplifier (DDA) is developed as the front end of Coriolis signal detection. This DDA has advantages of high gain, low temperature coefficient, good linearity, and low noise. The DDA achieves a 24dB gain and 0.01%/°C temperature coefficient. A transimpedance amplifier (TIA) with a tunable gain is employed as the front-end amplifier in the primary mode. A self-oscillation loop with automatic gain control (AGC) has also been implemented. A lateral-axis gyroscope and a vertical-axis gyroscope have been integrated with the control and sensing electronics on a standard CMOS chip. The two systems achieve the sensitivities of 1.3 mV/°/s for the lateral axis and 1.2 mV/°/s for the vertical axis, with the noise floors of 0.046 °/s/✓Hz and 0.050 °/s/✓Hz, respectively.;A 5-axis inertial measurement unit has been fabricated, containing a three-axis accelerometer, a lateral-axis gyroscope, and a vertical-axis gyroscope. The accelerometer uses symmetrical structures and vertical springs for z axis for higher sensitivity and less cross-axis coupling. The accelerometer achieves 50mug/✓Hz for lateral axis and 80mug/✓Hz for vertical axis, respectively.;In order to improve the performance of the gyroscopes, a six-stage Dickson charge pump is developed to achieve as high as 32V voltage on chip, to increase the mechanical sensitivity. A fully-integrated ripple-free peak detector is developed for fast peak tracking in the AGC loop of the drive mode. A method of quadrature error compensation is proposed and analyzed.;This circuit designs presented in this work are designed for but not limited to CMOS-MEMS inertial sensors. The method of balancing the low noise and low power consumption, the analysis of the system dynamics, and the concept of high gain frontend amplifiers for ultra-small capacitors are also useful for other capacitive MEMS inertial sensors. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
机译:深度反应离子刻蚀CMOS-MEMS技术提供了一种低成本,小尺寸和高性能的惯性传感解决方案。但是,用于CMOS-MEMS惯性传感器(包括加速度计和陀螺仪)的读出电子设备的设计具有挑战性,因为它们的机械灵敏度低且电容小。本文的工作是为CMOS-MEMS惯性传感器提出一种新的低功耗低噪声电路架构,并进行实验验证。;对于加速度计,一种改进的双斩波放大器(DCA)可以对MEMS结构的信号进行调制/解调。在高频和中频处两次放大,并在两个放大级中适当分配总增益,以同时实现低噪声和低功耗。三轴加速度计是使用基于DCA的电子设备制造的,横轴分别达到40mug / Hz,垂直轴达到130mug / Hz,功耗为1mW /轴。新型差分差动放大器(DDA)被开发为科里奥利信号检测的前端。该DDA具有高增益,低温度系数,良好的线性度和低噪声的优点。 DDA实现了24dB的增益和0.01%/°C的温度系数。具有可调增益的跨阻放大器(TIA)被用作主模式下的前端放大器。具有自动增益控制(AGC)的自激环路也已实现。横轴陀螺仪和纵轴陀螺仪已与控制和传感电子设备集成在标准CMOS芯片上。这两个系统的灵敏度分别为横轴1.3 mV /°/ s和垂直轴1.2 mV /°/ s,本底噪声为0.046°/ s / Hz和0.050°/ s / check。分别制造了一个5轴惯性测量单元,该单元包含一个三轴加速度计,一个横轴陀螺仪和一个垂直轴陀螺仪。加速度计对z轴使用对称结构和垂直弹簧,以提高灵敏度并减少跨轴耦合。加速度计的横向轴分别达到50mug /& Hz,垂直轴则达到80mug /✓ Hz;为了提高陀螺仪的性能,开发了一种六级Dickson电荷泵以实现高达32V的电压芯片上,以提高机械灵敏度。开发了一种完全集成的无波纹峰值检测器,用于在驱动模式的AGC环路中进行快速峰值跟踪。提出并分析了一种正交误差补偿的方法。这项工作中提出的电路设计是为但不限于CMOS-MEMS惯性传感器设计的。平衡低噪声和低功耗的方法,系统动力学分析以及用于超小型电容器的高增益前端放大器的概念对于其他电容式MEMS惯性传感器也很有用。 (可通过佛罗里达大学图书馆网站获得本文的全文。请检查http://www.uflib.ufl.edu/etd.html)

著录项

  • 作者

    Sun, Hongzhi.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号