首页> 外文学位 >Compound semiconductor native oxide-based technologies for optical and electrical devices grown on gallium arsenide substrates using MOCVD.
【24h】

Compound semiconductor native oxide-based technologies for optical and electrical devices grown on gallium arsenide substrates using MOCVD.

机译:基于化合物半导体原生氧化物的技术,用于使用MOCVD在砷化镓衬底上生长的光学和电气设备。

获取原文
获取原文并翻译 | 示例

摘要

The beginning of the modern microelectronics industry can be traced back to an invention made in 1947 when Bardeen and Brattain created the first semiconductor switch, called a transistor. Several other important discoveries followed; however, two of the more significant were (i) the development of the first planar process using silicon dioxide (SiO2) as a mask for diffusions into silicon by Frosch in 1955, and (ii) the subsequent integration of several transistors in tiny circuits by Kilby in 1958.; Due to the superior quality of the SiO2-silicon interface, Si-based metal-oxide-semiconductor (MOS) transistors have primarily been used in integrated circuits. Until recently, compound semiconductors did not have a native oxide of sufficient quality to create similar MOS transistors. In 1990, research performed by Professor Holonyak and his group at the University of Illinois at Urbana-Champaign has led to a high-quality, stable, and insulating native oxide created from aluminum-containing compound semiconductor alloys.; This study investigates native oxide films that are formed by the thermal oxidation of AlAs and InAlP epitaxial layers grown lattice-matched on GaAs substrates using metalorganic chemical vapor deposition (MOCVD). The primary goal is to evaluate how these native oxides can help form novel device structures and transistors. To qualify the material properties of these native oxide films, we have used several characterization techniques including photoluminescence, cross-sectional scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Additionally, we have performed leakage current and capacitance-voltage measurements to evaluate the electrical characteristics of the native oxide-semiconductor interface.; The kinetics of the thermal oxidation process for both the surface oxidation of InAlP and lateral oxidation of AlAs are studied and contrasted. Aided by this knowledge, we have created a sealed-interface local oxidation (SILO) isolation technique and high-contrast Bragg reflectors. Several n -channel GaAs native oxide-based transistors were also fabricated and tested. These depletion-mode devices are similar to silicon-on-sapphire (SOS) transistors where the gate oxide is formed from InAlP and the insulating substrate is replaced by an AlAs laterally oxidized epilayer. Our results indicate that the thermal oxidation process can influence transistor performance, and a theory explaining this effect is provided.
机译:现代微电子工业的起源可以追溯到1947年的一项发明,当时Bardeen和Brattain创建了第一个半导体开关,称为晶体管。随后还有其他重要发现。然而,其中更重要的两个是:(1)Frosch在1955年开发了第一个平面工艺,使用二氧化硅(SiO2)作为掩膜扩散到硅中的掩模;(ii)后来又将几个晶体管集成在微型电路中。基尔比(Kilby),1958年。由于SiO2-硅界面的卓越品质,基于Si的金属氧化物半导体(MOS)晶体管已主要用于集成电路中。直到最近,化合物半导体还没有足够的天然氧化物来制造相似的MOS晶体管。 1990年,伊利诺伊大学厄本那-香槟分校的Holonyak教授及其小组进行的研究导致了由含铝化合物半导体合金产生的高质量,稳定且绝缘的天然氧化物。这项研究调查了自然氧化膜,这些氧化膜是通过金属有机化学气相沉积(MOCVD)在GaAs衬底上晶格匹配的AlAs和InAlP外延层的热氧化而形成的。主要目标是评估这些天然氧化物如何帮助形成新颖的器件结构和晶体管。为了验证这些天然氧化物膜的材料性能,我们使用了几种表征技术,包括光致发光,横截面扫描电子显微镜(SEM),X射线衍射(XRD)和X射线光电子能谱(XPS)。另外,我们已经进行了泄漏电流和电容-电压测量,以评估本征氧化物-半导体界面的电特性。研究并对比了InAlP的表面氧化和AlAs的横向氧化的热氧化过程动力学。借助这种知识,我们创建了密封界面局部氧化(SILO)隔离技术和高对比度布拉格反射器。还制造和测试了几种基于n沟道GaAs天然氧化物的晶体管。这些耗尽型器件类似于蓝宝石上的硅(SOS)晶体管,其中栅极氧化物由InAlP形成,绝缘衬底被AlAs横向氧化的外延层代替。我们的结果表明,热氧化过程会影响晶体管的性能,并提供了解释这种效应的理论。

著录项

  • 作者

    Holmes, Adrian Lawrence.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号