首页> 外文学位 >THE MOLECULAR BEAM EPITAXIAL GROWTH OF HIGH QUALITY GALLIUM-ARSENIDE - ALUMINUM-GALLIUM - ARSENIDE HETEROSTRUCTURES FOR MICROWAVE DEVICE APPLICATIONS (QUANTUM WELLS, IMPURITY, PHOTOLUMINESCENCE, MODULATION DOPING).
【24h】

THE MOLECULAR BEAM EPITAXIAL GROWTH OF HIGH QUALITY GALLIUM-ARSENIDE - ALUMINUM-GALLIUM - ARSENIDE HETEROSTRUCTURES FOR MICROWAVE DEVICE APPLICATIONS (QUANTUM WELLS, IMPURITY, PHOTOLUMINESCENCE, MODULATION DOPING).

机译:高质量的砷化镓-铝镓-砷化物异质结构的分子束表观生长,用于微波设备的应用(量子阱,杂质,光致发光,调制掺杂)。

获取原文
获取原文并翻译 | 示例

摘要

The application of molecular beam epitaxially grown single quantum well (SQW) structures to modulation doped field effect transistors (MODFET) requires both high quality thick AlGaAs buffers and thin GaAs layers with excellent electron transport properties. Previous studies have suggested that the quality of GaAs grown on undoped AlGaAs or silicon doped AlGaAs (AlGaAs:Si) is degraded by the effects of interface roughness, carbon incorporation, or lattice strain between the two compounds.;In the present work, the properties of undoped and modulation doped SQWs grown by molecular beam epitaxy (MBE) are analyzed using photoluminescence (PL), Hall measurements, secondary ion mass spectroscopy (SIMS) and transmission electron microscopy (TEM). Structures are grown at high substrate temperatures (680(DEGREES)C) to optimize AlGaAs buffer quality. Very high quality samples with low impurity content are obtained. From PL, full width half maximum (FWHM) linewidths of the heavy hole exciton ranging from 0.6 meV to 1.1 meV for well thicknesses of 175 (ANGSTROM) to 100 (ANGSTROM) respectively are obtained, demonstrating high quality heterointerfaces. Growth at low V:III flux ratios is found to minimize unintentional impurity content. A study of the FWHM linewidth dependence on well thickness suggests that for well thicknesses > 125 (ANGSTROM) the intrinsic GaAs well quality and interface smoothness both contribute to the total linewidth for high quality wells. Studies of modulation doped single quantum wells demonstrate that silicon surface segregation on Al(,0.30)Ga(,0.70)As:Si and incorporation at GaAs growth initiation are the main factors causing the low electron mobilites of this structure. Analysis by SIMS, TEM and PL demonstrate silicon movement while smooth interface quality is still obtained. A PL lineshape analysis suggests the presence of a two dimensional (2D) impurity band in GaAs SQWs grown on AlGaAs:Si. Experimental data on the electrical and optical properties of 2D electron gases in SQWs are presented. Peak 77K Hall mobilities of 140,000 cm('2)/V-s are obtained for 120 (ANGSTROM) wells. The excellent active layer quality and Al(,0.30)Ga(,0.70)As buffer layer quality are demonstrated by the first successful fabrication of a low noise SQW MODFET with a submicron gate exhibiting a cryogenic noise temperature of 10.5K at 8.5 GHz.
机译:将分子束外延生长的单量子阱(SQW)结构应用于调制掺杂的场效应晶体管(MODFET)既需要高质量的厚AlGaAs缓冲层,又需要具有出色电子传输特性的GaAs薄层。先前的研究表明,在两种化合物之间的界面粗糙度,碳掺入或晶格应变的影响下,在未掺杂的AlGaAs或掺硅的AlGaAs(AlGaAs:Si)上生长的GaAs的质量会降低。使用光致发光(PL),霍尔测量,二次离子质谱(SIMS)和透射电子显微镜(TEM)分析了通过分子束外延(MBE)生长的未掺杂和调制掺杂的SQW。结构在较高的基板温度(680(DEGREES)C)下生长,以优化AlGaAs缓冲液的质量。获得了具有低杂质含量的高质量样品。从PL获得重孔激子的全宽半高(FWHM)线宽,其阱厚度分别为175(ANGSTROM)至100(ANGSTROM),证明了高质量的异质界面。发现在低V:III通量比下进行生长可以最大程度地减少意外杂质含量。对FWHM线宽对孔厚度的依赖性的研究表明,对于> 125(ANGSTROM)的孔厚度,固有的GaAs孔质量和界面光滑度均会影响高质量孔的总线宽。调制掺杂单量子阱的研究表明,Al(,0.30)Ga(,0.70)As:Si上的硅表面偏析以及在GaAs生长开始时的掺入是导致该结构的低电子迁移率的主要因素。通过SIMS,TEM和PL进行的分析显示出硅的移动,同时仍获得了平滑的界面质量。 PL线形分析表明,在AlGaAs:Si上生长的GaAs SQW中存在二维(2D)杂质带。给出了关于SQWs中二维电子气的电学和光学性质的实验数据。 120(ANGSTROM)孔的峰值77K霍尔迁移率达到140,000 cm('2)/ V-s。首次成功制造具有亚微米级栅极的低噪声SQW MODFET,证明了出色的有源层质量和Al(,0.30)Ga(,0.70)As缓冲层质量,其在8.5 GHz频率下的低温噪声温度为10.5K。

著录项

  • 作者

    MAKI, PAUL ARTHUR.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1986
  • 页码 308 p.
  • 总页数 308
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号