首页> 外文学位 >Methods for large-scale convex optimization problems with l1 regularization.
【24h】

Methods for large-scale convex optimization problems with l1 regularization.

机译:具有l1正则化的大规模凸优化问题的方法。

获取原文
获取原文并翻译 | 示例

摘要

Much of recent research in signal processing, statistics, and many other fields has focused on ℓ1 regularization based methods for feature selection, sparse signal reconstruction. In this thesis we study optimization problems with ℓ1 regularization, and efficient methods to solve them.;Our topic in §2, is how to solve a famous problem in classification, ℓ 1-regularized logistic regression problem. First, we study the problem, and derive optimality conditions and a dual problem. Then we describe an efficient interior-point method for the problem. Small problems with up to a thousand or so features and examples can be solved in seconds on a PC; medium sized problems with tens of thousand of features and examples, can be solved in tens of seconds (assuming sparsity in the data). A variation on the basic method, that uses a preconditioned conjugate gradient method to compute the search direction, can solve very large problems, with millions of features and examples in a few minutes, on a PC. We exploit the fact that PCG converges fast when the eigenvalues of the matrix in linear equations are clustered, and eigenvalues of the Hessian of the primal interior-point method are clustered. Using warm-start techniques, a good approximation of the entire regularization path can be computed much more efficiently than by solving a family of problems independently.;In §3, we focus on how to solve a famous problem in regression, ℓ 1-regularized least squares problem, which is also known as Lasso, Basis Pursuit denoising, and Compressed Sensing problem. In parallel with §2, we describe an efficient interior-point method based on the search direction found by the preconditioned conjugate gradient method. The method can solve large sparse problems, with a million variables and observations, in a few tens of minutes on a PC. It can efficiently solve large dense problems, that arise in sparse signal recovery with orthogonal transforms, by exploiting fast algorithms for these transforms. The method is illustrated on a magnetic resonance imaging (MRI) data set.;In §4, we consider another application of ℓ1 regularization to the problem of estimating underlying trends in time series data. We propose a variation on Hodrick-Prescott (H-P) filtering, a widely used method for trend estimation. The proposed ℓ1 trend filtering method substitutes a sum of absolute values (i.e., ℓ1-norm) for the sum of squares used in H-P filtering to penalize variations in the estimated trend. The ℓ1 trend filtering method produces trend estimates that are piecewise linear, and therefore is well suited to analyzing time series with an underlying piecewise linear trend. The kinks, knots, or changes in slope of the estimated trend can be interpreted as abrupt changes or events in the underlying dynamics of the time series. Using specialized interior-point methods, ℓ1 trend filtering can be carried out with not much more effort than H-P filtering; in particular, the number of arithmetic operations required grows linearly with the number of data points. We describe the method and some of its basic properties, and give some illustrative examples. We show how the method is related to ℓ1 regularization based methods in sparse signal recovery and feature selection, and list some extensions of the basic method.
机译:信号处理,统计和许多其他领域中的许多最新研究都集中在基于ℓ 1正则化的特征选择,稀疏信号重建方法上。在本文中,我们将研究ℓ 1正则化的优化问题以及解决这些问题的有效方法。§2中的主题是如何解决分类中的著名问题ℓ 1-正则逻辑回归问题。首先,我们研究问题,并得出最优条件和对偶问题。然后,我们描述解决该问题的有效内点方法。多达一千个左右的功能和示例的小问题可以在PC上在几秒钟内解决;具有数以万计的功能和示例的中等大小的问题,可以在几秒钟内解决(假设数据稀疏)。基本方法的一种变体,使用预处理的共轭梯度方法来计算搜索方向,可以在PC上在几分钟内解决数百万个功能和示例的非常大的问题。我们利用以下事实:当线性方程组中矩阵的特征值被聚类,并且原始内点法的Hessian的特征值被聚类时,PCG会快速收敛。使用热启动技术,可以比通过独立解决一系列问题而更有效地计算出整个正则化路径的近似值。在§3中,我们着重于如何解决回归中的著名问题,ℓ。 1正则化最小二乘问题,也称为套索,基本追踪去噪和压缩感测问题。与§2并行,我们基于预处理共轭梯度法找到的搜索方向描述了一种有效的内点法。该方法可以在PC上用几十分钟的时间解决百万个变量和观测值的稀疏问题。通过利用针对这些变换的快速算法,它可以有效地解决大型稀疏问题,这些问题是在正交变换的稀疏信号恢复中出现的。该方法在磁共振成像(MRI)数据集上进行了说明。在§4中,我们考虑了ℓ 1正则化在估计时间序列数据中潜在趋势问题上的另一种应用。我们提出了Hodrick-Prescott(H-P)过滤的一种变体,它是一种广泛使用的趋势估计方法。所提出的ℓ 1趋势滤波方法用绝对值之和(即ℓ 1-范数)代替用于H-P滤波的平方和,以惩罚估计趋势的变化。 ℓ 1趋势过滤方法产生的趋势估计是分段线性的,因此非常适合分析具有基础分段线性趋势的时间序列。估计趋势的扭结,结或斜率变化可以解释为时间序列潜在动态中的突变或事件。使用专门的内点方法,ℓ 1趋势过滤可以比H-P过滤花费更多的精力;特别是,所需的算术运算数与数据点数成线性增长。我们描述了该方法及其一些基本属性,并给出了一些说明性示例。我们将展示该方法与稀疏信号恢复和特征选择中基于ℓ 1正则化的方法之间的关系,并列出了基本方法的一些扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号